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SUMMARY

Nested sampling reverses the usual approach to Bayesian computation by
directly targeting the value of the evidence (alternatively the marginal likeli-
hood, marginal density of the data, or the prior predictive). Samples from the
posterior distribution are an optional by-product. Nested sampling is a simple
but general method, and although non-thermal itself, it can simulate thermal
results at any temperature. It is invariant over monotonic re-labelling of like-
lihood values, which allows it to deal with various phase-change problems
which effectively defeat thermal methods.
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1. INTRODUCTION

1.1. Bayesian computation from the beginning

Bayesian inference yields two results. One is the posterior distribution Pr(6 | D, H)
of the parameters 0 of interest, in the light of data D and in the context of hypoth-
esis H. The other is the support Pr(D | H) for the data under that hypothesis —
variously called the prior predictive (how it’s often used), the marginal likelihood
(how it’s often made), or the evidence (what it is). Good practice suggests giving a
crisp name to a centrally important quantity, and I follow the physicists (Mackay,
2003) in using the term “evidence”.

The evidence should come first. Model selection relies on it. It is the evidence
that guides our choice of model, through the ratios known as Bayes factors. Indeed,
why bother calculating a posterior at all if its evidence is poor? At the very least,
the value of the evidence ought to be quoted after any probabilistic calculation, as
a courtesy to other workers who might wish to analyse the same data differently.
The Bayesian’s primary task, then, is to evaluate the scalar

evidence = Z = /L(9) w(6) df = /LdX (1)
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where L = L(8) is the likelihood function and dX = 7(6) d6 is the element of mass
associated with prior density 7(6).
With this in place, the distribution of posterior mass follows as

posterior = dP = p(0)df = Z~'L(#) x(0) do (2)

In this paper, nested sampling (Skilling 2004, 2006) is developed as a general way
of evaluating the integral in (1). The evidence is the prime target, from which
representative samples from the posterior (2) follow as an optional by-product.

This methodology reverses the traditional approach dating back to Metropolis
et al. (1953), in which emphasis was placed on calculating the posterior, usually as
a set of random samples. The evidence was relegated to a secondary role, usually
calculated (if at all) as a by-product (Gelman & Meng, 1998) of algorithms such as
simulated annealing which are principally designed to compute the posterior. Now,
it comes first.

1.2. Sorting to one dimension

The evaluation of [ LdX looks like a straightforward problem of numerical anal-
ysis. Simplistically, one might raster over underlying coordinates 6 to evaluate
J L(6)w(0)df. However, this rapidly becomes impractical as soon as 6 has more
than a very few dimensions. Instead, we will use the prior X directly. Prior mass
X can be accumulated from its elements dX in any order, so define

X = /L L 3)

as the cumulant prior mass covering all likelihood values greater than A. As A
increases, the enclosed mass X decreases from X(0) =1 to X(o0) =0.

Area Z

0 X 1

Figure 1:  Sorted likelihood function with area Z.
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Writing the inverse function as L(X), i.e. L(X(A)) = A, the evidence becomes
a one-dimensional integral over unit range

Z=/0 L(X)dX ()

in which the integrand is positive and decreasing (Figure 1), so cannot be too badly
behaved. Accomplishing this transformation from 6 to X involves dividing the unit
prior mass into tiny elements, and sorting them by likelihood.

A very simple example, on a 4 x 4 grid of two-dimensional 8, is the table (Figure
2a) of likelihood values ascribed to its 16 cells of equal prior mass %. Our plan
is to proceed as if we could sort these elements by likelihood, in this example to
L = (30,29,27,25,23,21,20,18,17,13,12,11,10,9,5,2), whence Z is evaluated right-to-
left as 3+ B+H+HEB R+ et ettt et st e tististis = 17 into
domains of progressively greater likelihood as shown in Figure 2b.
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Parameter space

Figure 2:  Likelihood values (a) in parameter space, (b) sorted as L(X).

Actually doing the sorting would usually be expensive, but it’s possible in prin-
ciple. As a technicality, nested sampling requires the likelihood function L(X) to
be strictly decreasing to make the mapping between § and X unambiguous. To
ensure this, we need to resolve ties between points of equal L. An object k, which
has coordinates 65 and corresponding likelihood Ly = L(6g), can also be assigned a
label ¢, chosen from some library large enough that repeats are not expected. Ran-
dom samples from Uniform(0,1) suffice, as would a cryptographic identification key
derived from 6, or almost anything else. Labels parameterize within each likelihood
contour, and extend the likelihood to

Lz = L + ely, (5)

where € is some tiny coefficient that never affects numerical likelihood values (which
are always held to finite precision), but nevertheless enables an unambiguous rank-
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ing of the objects, even where raw likelihoods are equal. With this refinement
understood, we take L(X) to be strictly decreasing.

1.3. Integration in one dimension

Coordinate-dependent complications of geometry, topology, even dimensionality, are
all annihilated by the sorting operation, and the remaining task of one-dimensional
integration is easy and well-understood. Suppose that we knew how to evaluate the
likelihood as L; = L(X;) at a right-to-left sequence of m points

0<Xn< - <X2< X1 <1 (6)

Any convenient numerical recipe would then estimate Z as a weighted sum
m
Z = Z Liw; (7)
i=1

of these values, in which the area in Figure 1 is approximated as a set of columns
of height L and width w = AX.

Because L(X) is non-increasing, it is bounded below by any value evaluated at
larger X. Hence w; = X; — X;41 with X,,41 = 0 gives a lower bound

1 m
Z=/ LdX > Y Li(Xi — Xit1) (8)
0 i=1
Lmax_ #m
L
#2
#1

0

0 X 1

Figure 3:  Lower bound (dark shading) and upper bound (all shading) on
area. The thick line indicates the trapezoidal rule.

There is a similar upper bound (Figure 3) from w; = X;_1 — X; with Xo =1,

1 m
Z=/ LdX < ) Li(Xi-1— Xi) + LmaxXm (9)
0 =1
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where Lmax is the maximum likelihood value to be found as X — 0. Technically,
Lmax is not determined by nested (or any other) sampling. There could always
remain some tiny volume containing huge and dominant likelihood values, unless
that can be ruled out by some global analysis (as when a Gaussian likelihood factor
cannot exceed 1/v/27a). However, when judging that a run can be terminated, we
implicitly assert that any increase in L beyond the highest value yet found is not
consequential. With this proviso, the upper limit (9) is relevant, and errors from
numerical integration are at most @(N~'), that being the difference between upper
and lower bounds.

The trapezoidal rule w; = £ (X;_1 — Xi+1) reduces this to O(N~?) in most cases.
The integrand is already well behaved, so further improvement is not expected.

1.4. Logarithmic sampling

The integral for Z is dominated by wherever the bulk of the posterior mass is to be
found. Typically, this occupies a small fraction e~ of the prior, where

H= /log(dP/ dX) dP = information. (10)

H is (minus) the logarithm of the compression ratio, being that fraction of prior
mass that contains the bulk of the posterior mass. It may well be of the order of
thousands or more in practical problems where the likelihood is concentrated in
some exponentially small corner of the prior domain.

As an example, suppose that the likelihood function has R approximately-
Gaussian principal components, so that L is approximately a rank-R multivari-
ate normal. In accordance with the “x? = R ++/2R” folklore, the shell contain-
ing most of the posterior mass would be fairly broadly distributed over a range
Alog X ~ /R. Moreover, each useful principal component of the likelihood sig-
nificantly restricts the range originally permitted by the prior (otherwise it’s not
useful), so H should usually exceed R, let alone /R, confirming general experience
that locating and reaching the posterior domain is a more difficult task than nav-
igating within it. This qualitative behaviour where the posterior mass is mostly
around log X ~ —Huge =+ big (Huge meaning H and big meaning \/R) is widely seen
in practical applications.

To cover such a range, sampling ought to be geometrical rather than linear in
X, so we write

X1 = t1, Xo = tita, - -- s X; =tita.. gy e (].].)
with
tq;IXq;/Xi_1, 0<t;<l1. (12)

It is these ratios t that control the calculations. If, for example, we could set ¢ = 0.99
each time, then we should reach the bulk of the posterior after something like 100H
steps, and cross it in a further 100+/R steps. Any such sequence t would lead to an
estimate of Z, which we would make explicit by writing

Z(t) = Xm:Ll’wl(t) (13)

according to the trapezoidal (or other) rule. This elementary integration scheme
appears to rely upon explicit and impractical sorting, but actually it need not.
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2. NESTED SAMPLING
2.1. The idea

Although we cannot usually set precise values of ¢, it turns out that we can often
set them statistically, and that is enough. The resulting value of Z will have a
corresponding uncertainty, but that is tolerable because we can estimate it. The
simplest way of obtaining a random ¢ less than 1 is to set

t; = Uniform(0,1), from Pr(t) =1. (14)

In principle, such an object could be obtained by sampling X; uniformly from
within the corresponding restricted range (0, X;_1), then interrogating the origi-
nal likelihood-sorting to discover what its ; would have been.

6; = Sort " (Uniform in X < Xi_l) (15)

In practice, it is (much) easier to obtain 6; directly, by sampling within the
equivalent constraint L(6) > L;_1 in proportion to the prior density 7(6). (At the
start, set Lo = 0 to ensure complete initial coverage.)

6; = Sample (Prior within L > Li71) (16)

After all, this constraint on L is equivalent to X < X;_1 because L(X) is a decreasing
function. Each sampling method yields a random prior element within the common
constraint, so the two are equivalent. But the likelihood constraint (16) bypasses
explicit use of X. So we don’t need to sort at all!

Parameter space 0o X X X 1

Figure 4:  Nested likelihood contours are sorted to enclosed prior mass X.

This is illustrated in Figure 4, in which prior mass is represented by area on the
left. Thus, object 2 is found by sampling over the prior within the box defined by
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L > Ly, and so on. Such objects will usually be found by some MCMC approxi-
mation, starting at an object § known to obey the constraint (if available), or at
worst starting at 6;—; which lies on and defines the current likelihood boundary.
We assume that we can do this, noting that sampling within a hard constraint will
be (if anything) easier than the traditional Metropolis-Hastings sampling involving
likelihood-weighting and detailed-balance.

In terms of prior mass, successive intervals w scan the prior range from X =1
down to X = 0. In terms of coordinates 6, the intervals represent nested shells
around contours of constant likelihood value, with objects exactly on the same
contour being ranked by their labels £. More generally, instead of taking 1 object
within the likelihood-constrained box, take N of them where N is any convenient
number, and select the worst (lowest L, highest X), as the ¢’th. The shrinkage ratio
t; = X;/X;_1 is now distributed as

Pr(t;) = Nt;' ' in (0,1), (17)

t; being the largest of N random numbers from Uniform(0,1). The mean and stan-
dard deviation of logt are

E(logt) = —1/N, dev(logt) =1/N. (18)

The individual log ¢ are all independent, so after 7 steps, the prior mass is expected to
shrink to log X; ~ —(¢++/%)/N. Thus we expect the procedure to take about NH +
V NH steps to shrink down to the bulk of the posterior, and a further Ny/R or so
steps to cross it. For a crude implementation, we can simply proclaim log X; = —i/N
as if we knew it, though it’s more professional to acknowledge the uncertainties.

Actually, it is not necessary to find N objects anew at each step, because N—1
of them are already available, being the survivors after deleting the worst. Only one
new object is required per step, and this § may be found by any method that draws
from the prior subject to L(f) being above its constraint L;—i. One method is to
replace the deleted object by a copy of a random survivor, evolved within the box
by MCMC for some adequate number of trials. Surviving objects could be used as
stationary guides in such exploration. Another method might be generation of new
objects by genetic mixing of the survivors’ coordinates. All that matters is that the
step ends with N usably independent objects within the constraint.

2.2. The procedure

At each step, nested sampling has N objects 61, ...,0n with corresponding likeli-
hoods L(61),...,L(6n). The likelihood L; associated with step ¢ is the lowest of
these values. There are to be j iterative steps.

Start with N objects 0y,...,0ny from prior;
initialize Z =0, Xo =1, and H = 0.
Repeat for 1 =1,2,...,7;
record the lowest of the current likelihood values as L;,
set X; = exp(—i/N) (crude) or sample it to include its uncertainty,
set w; = X;_1 — X; (simple) or (X;_1 — X;41)/2 (trapezoidal),
increment Z by L;w; and update H likewise, then
replace object of lowest likelihood by new one drawn
from within L(f) > L;, in proportion to the prior 7(6).
In principle, complete Z with (simply) N™!(L(81) + ...+ L(8n)) X;.
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The last step uses the surviving objects to fill in the final band 0 < X < Xj
of the full integral from 0 to 1, after the iterative steps have covered the domain
outside X;. So the final number of terms in the evidence summation (7) becomes
m = j+ N. However, there should already have been sufficient steps j to accumulate
most of the integral, so this final increment ought to be unimportant.

Figure 5 illustrates the method, running with N = 3 objects. Initially, three
objects are taken from the unconstrained prior, whose mass is represented by the
complete square area on the left. These objects could equivalently have been taken
randomly from X in (0,1), as shown on the lower line on the right. They have
labels 1, 3, 4, as yet unknown. In step 1, the worst (lowest L, highest X)) of these
objects is identified as number 1, with likelihood L;. It is then replaced by a new
object, drawn from inside the contour L(d) > L.. Equivalently, it could have been
taken randomly from X in (0, X1). Including the two survivors, there are still three
objects, now all uniform in the reduced range (0, X1). With the particular random
numbers used for Figure 5, the new object in step 1 happened to lie outside the two
survivors, so became number 2, but in step 2 the new object happened to be the
innermost, and was eventually identified as number 5. After the j = 5 allotted steps,
the five discarded objects 1,2,3,4,5 are augmented with the final three survivors 6,7,8
to give the m = 8 objects (X1, ..., Xs) shown on the top line. It is over these objects
that the sum Ele L;w; is evaluated to estimate Z.

R __ 4 4 *—©& 0@

0 8 samples X 1

0 Xy Step5

0 X 4 Step 4

-oo—e—

0 X, Step3

0 X, Step2
90— —

0 X, Stepl

0 d 1

Parameter space Enclosed prior mass X

Figure 5: Likelihood contours shrink by factors exp(—1/3) in area and
are roughly followed by successive objects 1,2,3,4,5.

With N = 3 objects, shrinkage is expected to be roughly geometrical, by
Alog X ~ —1/3 per step. The diagram on the left of Fig. 5 shows likelihood
contours drawn at levels corresponding to enclosed areas diminishing by this factor
— 14.e. the 7’th contour encloses prior mass e~i/3, Indeed, the first object lies close
to the first contour, the second object is not too far outside the second contour,
and so on until the fifth object chances to fall inside the fifth contour. If we could
arrange exact matching, we would know the X’s and have a definitive answer for Z,



Nested Sampling 9

depending only on the scheme of numerical integration. Since we can’t arrange this,
we will derive a probabilistic estimate instead.

2.3. Termination

Termination of the main loop could simply be after a pre-set number of steps, as used
for simplicity in the example code (Sivia & Skilling, 2006) of the Appendix. Better,
it could be when even the largest current likelihood, taken over the full currently
available prior mass, would not increase the current evidence by more than some
small fraction f;

max (L(91), ce L(GN)) X; < fZ; = termination. (19)

Plausibly, the accumulation of Z is then tailing off, so the sum is nearly complete.
If an analytical upper bound L < Lmax can be found, such as when a Gaussian
likelihood factor cannot exceed 1/v/27o, it can be used in (19) to give a firmer
termination criterion

LnaxX; < fZ; = termination. (20)

In this case, all but a fraction f of Z has (almost-)definitely been found.

The usual behaviour of the areas L;w; is that they start by rising, with the
likelihood L; increasing faster than the widths w; decrease. The more important
regions are being found. At some point, L flattens off sufficiently that decreasing
width dominates increasing likelihood, so that the areas pass across a maximum and
start to fall away. Most of the total area is usually found around this maximum,

which occurs in the region of X ~ e ¥ . Remembering X; ~ e N this suggests an
alternative termination condition
“continue iterating until the count i significantly exceeds NH” (21)

which still expresses the general aim that a nested-sampling calculation should be
continued until most of Z seems to have been found. (Of course, H is here the
current evaluate from the previous 7 iterates.)

Unfortunately, there can be no rigorous criterion based on sampling alone which
ensures the validity of any such termination condition. It is perfectly possible for
the accumulation of Z to flatten off, apparently approaching a final value, whilst
yet further inward there lurks a small domain in which the likelihood is sufficiently
large to dominate the eventual results. Termination remains a matter of user judg-
ment about the problem in hand, albeit with the aim of effectively completing the
accumulation of Z. If in doubt, continue upward and inward.

2.4. Numerical uncertainty

It is possible to run nested sampling crudely, by assigning each compressive logt its
mean value of —1/N, and ignoring its uncertainty. With X; thereby being set to
e~ iN , this captures the basic idea by giving a quick picture of the likelihood function
L(X). An early example of a similar approach is McDonald & Singer (1967), and it
is encoded in the simple Appendix program. However, we have already seen that if
the algorithm takes N H steps to reach the bulk of the posterior, that number will be
subject to Poisson uncertainty v NH. That translates to a geometrical uncertainty
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factor exp(++/H/N) (which could be many powers of €) in the weights w of the
dominating iterates, which scales directly into the corresponding standard-deviation
uncertainty

dev(log Z) = \/H/N (22)

For most practical purposes, this estimate suffices. Alongside this uncertainty in
log Z, any systematic numerical bias imposed by the integration rule is usually less
than a single factor of e, hence negligible.

A more complete treatment is also possible. For a given choice of coefficients t,
the estimate of Z would be ), L;w;(t) from (13). One such choice of t will be
correct, corresponding to the selected objects 6;, but we do not know which. Instead,
the sequence probability Pr(t)dt = [], Nt} ~'dt; from (17) induces a distribution
for the estimates of Z:

Pr(Z) = / 5(2 - i: Liwi(t)) Pr(t) dt (23)

This can be estimated by Monte Carlo, by taking a set {t} of several dozen samples
from the sequence probability Pr(t) to simulate the X’s and thence obtain the
distribution of Z from the samples {Z(t)}.

log Z = estimate + uncertainty, from {log Z(t)} (24)

Just as in (22), the uncertainty accompanying these more refined estimates will
usually diminish as the inverse square root of N, the amount of computation that
one is prepared to invest in the original exploration.

2.5. Posterior and Quantification

Nested sampling allows posterior samples to be extracted from the evidence cal-
culation, trivially reversing the traditional approach. Representative samples from
the posterior density are defined by sampling from the posterior distribution p(6),
which is simply the prior weighted by likelihood as represented by the area under
L(X), illustrated in Figure 6.

In other words, the existing sequence of objects 61,85, 603, - - - already gives a set
of posterior representatives, provided the 7’th is assigned the appropriate importance
weight L;w;, normalized by Z to yield a probability with unit total. For a given
choice of coefficients t, the posterior probability for object ¢ would be

pi(t) = Liw;(t)/Z(t) (25)
with
pi=Lie”"N )z (26)

as the standard crude assignment for a run with N objects. There will usually
be little reason to adopt the sophistication of averaging (25) over t (presumably
by Monte Carlo), so that (26) should usually suffice. If wanted, equally-weighted
samples can be obtained randomly from the area Z, with object 6; selected propor-
tionally to p;. About N,/R different ones will usually be available, that being the
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Figure 6:  Posterior samples are scattered randomly over the area Z.

range covering the bulk of the posterior. They could be used as seeds for traditional
Metropolis-Hastings exploration (section 3.2) if yet more were needed.

In order to quantify some property Q(6), we seek the posterior distribution
Pr(Q), which comes directly from the weighted sequence (25) or (26). In particular,
the mean and standard deviation of ) are as usual obtainable from the first and
second moments

p=Y piQW:), p+o’ =) piQ@6) (27)
i=1 i=1

where p; is set by (26) as standard, or by (25) with subsequent averaging over t if
numerical uncertainties are needed.

The availability of the posterior distribution and its quantification completes
nested sampling as a system for Bayesian inference.

3. COMPARISONS
3.1. Annealing

Nested sampling is related to simulated annealing, which uses fractional powers L?
of the likelihood to move gradually from the prior (3 = 0) to the posterior (3 = 1).
As the inverse temperature 8 increases, annealing softly compresses a thermalized
ensemble of objects {0} sampled from dPz x L” dX. At stage 8, the mean log-
likelihood

LPlogLdX d
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is estimated by averaging over the corresponding ensemble of objects at that stage
of computation. Summing this yields

1 1 1
/ (log L)g dB = log/ LdX — log/ dX =logZ (29)
0 0 0

which is the thermodynamic integration formula. The corresponding uncertainty is
mostly ignored — presumably because the uncertainty in (log L), though obviously
present, is difficult to assess reliably.

The bulk of the ensemble, with respect to log X, should follow the posterior
dPs « LP X d(log X) and be found around the maximum of L° X. Under the usual
conditions of differentiability and concavity “~”, this maximum occurs where

. _ dlog X
~ dlogL

B (30)

Annealing over § thus tracks the density-of-states g*, equivalent to —1/slope on
a log L/log X plot, whereas nested sampling tracks the underlying abscissa value
log X.

log L

Figure 7:  Annealing tracks the tangent, nested sampling tracks the abscissa.

As B increases from 0 to 1, one hopes that the annealing maximum tracks steadily
up in L, so inward in X (Figure 7). The annealing schedule that dictates how fast
the slope 1/ flattens ought to allow successive posteriors Ps to overlap substantially
— exactly how much is still a matter of some controversy. Nested sampling has no
such schedule: it only needs the assignment of an adequate number N of objects.

3.2. Metropolis-Hastings

Nested sampling requires objects 8 to be drawn from the prior while obeying a hard
constraint L(6) > Lmin. Some form of MCMC will usually be used to approximate
this. Assuming a transition scheme § — 6’ that samples the prior faithfully when
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unconstrained, nested sampling is implemented by the transition rule:
accept 0’ if and only if L(6') > Lmin - (31)

Of course, the starting point § will already obey the constraint, so that sufficiently
small transitions will normally be accepted.

The traditional Metropolis-Hastings rule (Hastings 1970), aiming for the poste-
rior instead of the evidence, is (or is equivalent to)

accept @' if and only if L(8')" > L(6)” x Uniform(0,1). (32)

Nested sampling is slightly simpler, but the two rules are very similar. At sim-
ilar stages in their iterations, both methods allow similar step-lengths, so their
exploratory speeds are much the same.

However, nested sampling relies only on the shape of the likelihood contours, and
not on the likelihood wvalues, whether or not these are annealed. This invariance over
monotonic relabelling of likelihood contours makes nested sampling independent of
the quirks of likelihood value, hence more robust.

3.3. Slice sampling

Slice sampling (Neal, 2003) is a way of adjusting the MCMC step length “on the fly”
to ensure a successful transition. An acceptance level is set, traditionally (32) as for
Metropolis-Hastings, and the step length of trial transitions is adjusted either inward
or outward (subject to detailed balance) until an appropriate success. Exactly the
same technique works with nested sampling, except that the acceptance level is
slightly simplified to (31) instead.

3.4. Importance sampling

Suppose that some factor f(6) is extracted from the likelihood and included in the
prior instead. If it is reasonably efficient to sample from the revised prior f(0)w(6),
then we can use nested sampling with revised likelihood L/f to compute

_ (1O
Z= / Ho [Om@)as (33)

using f as an importance factor. This will, of course, be the same evidence value
as before, to within the numerical uncertainty. However, the amount of uncertainty
will change. If we are clever enough to factor part of the likelihood into the prior,
and still manage to normalize that and sample from it, we would thereby start
closer to the posterior, with reduced mismatch H, and can expect to be rewarded
with a better estimate having diminished uncertainty. Conversely, if we were foolish
enough to retreat away from the posterior by dividing some factor out of the prior,
then we should expect to pay for it with increased uncertainty. This is just how a
properly constituted algorithm for inference ought to behave.

3.5. Ezact sampling

For some specialized problems, it may be possible to find provably exact samples
(Propp & Wilson, 1996) within a likelihood contour, and thus remove any doubt
concerning imperfect sampling. Because the probabilities p; of the nested samples
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are calculated essentially perfectly, the posterior samples generated through nested
sampling would also be exact, as would any quantification statistics @ derived from
the complete nested sequence. If exact samples turn out to be easier to find within
a likelihood contour than with respect to the full posterior, this would extend the
currently small class of problems amenable to exact sampling, with the added benefit
of obtaining the evidence value.

3.6. Ensembles

Let nested sampling use N objects instead of just 1. It could be run, as suggested,
with each individual L(6:),...,L(f~) subject to the common constraint Lmin. This
is illustrated in Figure 8a, using only 2 objects for clarity in a 2-dimensional diagram.
In successive iterates, these two objects are constrained within successively small
squares of prior mass (regardless of the associated likelihood values).

Alternatively, nested sampling could be implemented with the N objects con-
sidered as independent components of a single ensemble with joint likelihood

L(61,6s,...,0x) = L(61)L(62) ... L(6x) (34)

subject to the single constraint £ > Lmin. But there’s a subtle difference, be-
cause the constraint on £ will not — indeed can not — yield a simple square.
For example, Figure 8b illustrates successive constraints for the likelihood func-
tion L(X) = X ~1/2_ for which the curves happen to be hyperbolas. As iterations
procced, one of the objects becomes much more constrained than the other, and
the dichotomy increases with N, and with iteration. Obviously, exploration may be
harder within such awkward shapes, whose details depend on the likelihood function,
so the alternative implementation is likely to be inferior.

1 1
(a) (b)

0 X 1 0 X1 1

1

Figure 8:  Nested sampling under (a) separate constraints, (b) joint constraint.

Traditional exploration imposes likelihood factors L? on individual objects. This
is exactly equivalent to imposing a single factor £? on the ensemble as a whole. Yet



Nested Sampling 15

the difference between imposing a temperature 1/3, and imposing a single hard con-
straint, on £ is usually only 1 part in N. In statistical thermodynamics, the former
is called a canonical ensemble whilst the latter is called a microcanonical ensemble,
and the two are used interchangeably. So the traditional “thermal” methodology
corresponds to an inferior implementation of nested sampling.

3.7. Density of states

The density of states (being the prior mass in a thin likelihood shell — loosely, its
surface area) is often defined with respect to “energy” E = —logLas g = dX/dE =
—dX/dlog L, but here it is more convenient to define it in fully logarithmic form
as in (28) above

¥ dlog X
L)=—-
R (35)
Differencing across r steps gives
. log X; —log X;—», —logt; —logt;1—...—logti ri1
L) =— =
g (L) log L; —log L;—» log L; —log L; (36)

for L somewhere between L; , and L;. The statistics (16) of each logt are known,
and independent, so that in terms of mean and standard deviation

« _ (r£4r)/N
g = logL; —log L;—, (37)

As usual in numerical differentiation, the formal uncertainty diminishes as the cho-
sen interval widens, but the difference ratio relates less precisely to the required
differential.

Individual steps (r = 1) estimate g* locally with 100% expected error. Even
S0, these steps underlie the evidence summation and are the most basic results of
the computation. Individual steps can also build properties other than the evidence
(known in thermodynamics as the partition function). In particular, the annealed
partition function

Z(B) = /0 1 L?dx (38)

is available at any inverse temperature 3, provided the computation is carried far
enough inward to cover the bulk of the required integral.

Nested sampling is non-thermal, but can simulate any temperature. The simu-
lation relationship (38) can be written as a Laplace transform.

2(8) = / o(E)e PE dE (39)

Although it is sometimes possible to invert Laplace transforms analytically, numer-
ical inversion is badly conditioned. Basically, Laplace transforms all look so similar
that their progenitors can’t easily be distinguished. Z can be derived from g, but
not the other way round.

This means that nested sampling’s density of states is more fundamental than
annealing’s thermal properties. Likewise in physics, thermodynamics is built upon
quantum states, not the other way round.
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3.8. Multiple phases

Suppose, contrary to Figure 7 above, that the logarithmic density of states g* is not
an increasing function of log X, so that L X is not concave (Figure 9).

log L

log X A

Figure 9:  Annealing has difficulty with convez likelihood.

No matter what schedule is adopted, annealing is supposed to follow the con-
cave hull of the log-likelihood function as its tangential slope flattens. But this will
require jumping right across any convex “—” region that separates ordinary con-
cave “phases” where local maxima of L° X are to be found. At 8 = 1, the bulk
of the posterior should lie near a maximum of LX, at B or E in one or other of
these phases. Let us call the outer phase “steam” and the inner phase “water”, as
suggested by the potentially large difference in volume. Annealing to g = 1 will
normally take the ensemble from the neighbourhood of A to the neighbourhood of
B, where the slope is dlog L/dlog X = —1/8 = —1. Yet we also want objects to be
found from the inner phase beyond D, finding which will be exponentially improb-
able unless the intervening convex valley is shallow. Alternatively, annealing could
be taken beyond 8 = 1 until, when the ensemble is near the point of inflection C,
the supercooled steam crashes inward to chilled water, somewhere near F. It might
then be possible to anneal back out to unit temperature, reaching the desired water
phase near E. However, annealing no longer bridges smoothly during the crash, and
the value of the evidence is lost. Along with it is lost the internal Bayes factor
Pr(states near E)/Pr(states near B) which might have enabled the program to as-
sess the relative importance of water and steam. Phase change problems in general
are difficult to anneal, and especially so when of first order as here. Nested sampling,
though, marches steadily down in prior mass X along ABCDEF-- -, regardless of
whether the associated log-likelihood is concave or convex or even differentiable at
all. There is no analogue of temperature, so there is never any thermal catastrophe.

If there were three phases instead of just two, annealing might fail even more
spectacularly. It would be quite possible (Figure 10) for steam supercooled to B to
condense directly to cold ice at E, and superheated ice at D to sublime directly to
hot steam back at A, without settling in an intermediate water phase at all. The
dominant phase could be lost in the hysteresis, and inaccessible to annealing.
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log L

log X

Figure 10: Dominant “water” phase is lost in hysteresis loop ABED. The
desired region BCD can be missed by annealing.

Nested objects, though, will pass through the steam phase to the supercooled re-
gion, then steadily into superheated water until the ordinary water phase is reached,
traversed, and left behind in an optional continued search for ice. All the internal
Bayes factors are available, so the dominant phase can be identified and quantified.

4. COPYING

Suggested but not forced by nested sampling, the “copy” operation of replacing a
rejected object by a duplicated favoured one is useful of itself, particularly when the
likelihood is multi-modal. At each iterate, the worst (outermost) object is discarded
in favour of a copy of an internal survivor, which is then re-evolved.

The likelihood function need not have the convenient single maximum shown
in Figure 4. Consider intead a bi-modal likelihood, having two maxima, such as
that shown in Figure 11. One mode is dominant because it contains the bulk of
the evidence [ LdX: the other is subordinate. There is a critical likelihood gate
below which the modes are connected, and above which they are separate. Before
the gate is reached, MCMC exploration can presumably diffuse freely around the
volume enclosing both modes. After the gate is passed, transitions between modes
need to jump across to the other domain, which soon becomes hard to find so that
transitions are blocked and an object can diffuse only within its own mode.

At the critical likelihood, let the accessible volumes be X; for the dominant
mode and X for the subordinate. The chance of an exploratory object falling into
the dominant mode as the gate closes behind it is the proportional gate width

X,

W=——-—-—. 40
X1+ X (40)

Conversely, with chance 1 — W, it falls into the subordinate mode, where it is
essentially trapped. With N independent objects, the chance of “success” with at
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Figure 11:  The thick likelihood contour around the dominant mode X1 is
a “gate”. The subordinate mode X2 is surrounded by a “trap”.

least one object in the dominant mode is
Pr(success | N objects) =1 — (1 — W)™ . (41)

Basically, we need rather more than W ™! objects to be reasonably sure of at least
one success. Thus, if the gate width is W = 1/64 but we only supply N = 10
objects, then the chance of a success is less than 1/6.

It may be that a particular multi-modal problem has just one narrow gate.
Eventually, the likelihood will favour the dominant mode by a factor that more than
compensates for the narrow opening, but that’s not known as the gate is passed,
and we don’t want the expense of retreating back to the gate afterwards even if we
had reason and knew how far to retreat.

It is perhaps more likely that a complicated problem has several gates, perhaps
six gates of width 1/2 or so at different likelihood levels, instead of just one of
width 1/64. After all, there is a bigger parameter-space associated with this more
general framework. If objects are programmed to explore independently, half will
fail at the first gate, then half the survivors will fail at the second and so on until
the final survival rate is only 1/64, just as for a single narrow gate; this is shown
schematically in Figure 12.

With copying, though, the object with lowest (worst) likelihood is eliminated
in favour of a copy of one of the (better) others. After a gate is passed and the
likelihood constraint continues to climb to more-restrictive heights, the subordinate
mode should become progressively less populated. Indeed, after the nested-sampling
constraint has climbed above the subordinate maximum, that mode can have no
surviving objects at all. So, even if a gate is quite narrow, the dominant mode
becomes re-populated provided at least one object manages to find it.

With a gate width of 1/2, the chance of having at least one success from N
objects is 1 — 27V nearly certain. Before the next gate is reached, it may well
be that the population along the dominant route has increased from the original
N/2 back up to or nearly to N. After 6 such gates, with a mere 2% chance of
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Figure 12:  (a) Several wide gates, and (b) one narrow gate of equivalent aperture.

failure at each, the chance of success is (1 —277V)%. Not only is this more than 99%
for N = 10, but quite soon afterwards most or all of the objects should be in the
dominant mode. Nested sampling’s “copy” operation has turned an expectation of
total failure into a a high probability of complete success.

Generally, with a series of well-separated gates of widths Wy, the expectations
of success are

N
1- (1 -1, Wg) for no copying,

Pr(success | N objects) = (42)
11, (1 -(1- Wg)N) with copying.
Basically, the number of objects needed to give a good chance of success is
[nw-! for no copying,
Nminim m ~ — . . 43
" {(WmaX) ! with copying. (43)

and copying always beats exploration by individually-preserved objects.

5. EXAMPLES

5.1. Gaussians

Let the coordinates 6 have uniform prior over the 20-dimensional unit cube —%, %]20,
and let the likelihood be

20 1 92 20 1 92
L(6) =100 — € - + —— e - 44
( ) 1:H1 27Tu P ( 2u2> z:HI 27”1 P ( 21}2) ( )

with v = 0.01 and v = 0.1. This represents a Gaussian “spike” of width 0.01
superposed on a Gaussian “plateau” of width 0.1. The Bayes factor favouring the
spike is 100, and the evidence is Z = 101. There is only a single maximum, at
the origin, and this should surely be an easy problem. Yet L(X) is partly convex
(Fig;ure 13), and an annealing program restricted to 8 < 1 needs roughly a billion
(e?%) trials to find the spike, and several times e?° to equilibrate properly. On the
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Figure 13: Gaussian spike on plateau. The spike is favoured by a Bayes
factor exp(5), but annealing needs exp(20) trials to find it.

other hand, H is only 63.2, so nested sampling could reach and cross the spike and
cover the whole range of Figure 13 in a mere 100 iterates.
Admittedly, about N = 16 objects would be needed if the uncertainty from

log Z = log(101) + 1/63.2/N (45)

(and hence in the spike/plateau Bayes-factor logarithm) needs to be reduced to the
+2 or so required to identify the favoured (spike) mode with reasonable confidence.
That multiplies the computational load to something like 1600 evaluations, though
this remains comfortably less than 5.

On the other hand, if the spike was moved off-centre to (0.2,0.2,0.2,...), with
likelihood

20 2 20 2
1 (6; —0.2) ) 1 ( 0; )
L6=100|| exp| — ———— +|| exp | — 46
© o1 V2mu P( 2u? =1 V2T ’ 2v? 1o

then nested sampling too would be in difficulty. There are now two maxima over
6 and, at the separatrix contour above which the phases separate, the aperture
of the plateau is e3> times greater than that of the spike. This means that some
huge number of trials is needed to have a good chance of finding the spike, even
though the log L/ log X plot is indistinguishable from Figure 13. That’s impossible
in practice. General multi-modality remains difficult.

Of course, this particular problem is easily soluble by splitting it into its con-
stituent parts and evaluating the two evidence values separately. With evidence
values being so easy to compute, it’s better to split problems (where possible) than
to attempt joint computation. Splitting avoids the dangerous mismatch between
initial gate widths and final Bayes factors: it’s better to avoid a problem than to
have to solve it. More generally, it’s preferable to do separate calculations when
trying to compare models of different types (as in cosmology: Mukherjee, Parkinson
and Liddle (2006)).
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5.2. Data analysis

It is not just large problems with awkward likelihood functions that exhibit phase
changes. In data analysis, it frequently happens that there is an initial “it’s all just
noise” phase to be overcome before the true interpretation of the signals emerges.
As trivial illustration, consider a small experiment to measure the single coor-
dinate 8, over which the prior 7() is flat in (0,1). Its data D yield the likelihood
function (Figure 14)
L(6) = 0.99 2° L 001 with, sa 10°° (47)

This is already a decreasing function, and the sorting operation of nested sampling
is just the identity, X = 6.

20 qworking

log L

10

failure

20 10 logX 0

Figure 14:  The “working” phase on the left is hard to find by annealing.

An interpretation of (47) is that the experiment was anticipated to work with
99% reliability. If it worked, the likelihood L = 2¢®/(6 + q)* would have been ap-
propriate, meaning that 6 & 10™° was measured. If it failed, which was anticipated
1% of the time, the likelihood would have been the uninformative L = 1, because
the equipment would just return a random result. Under annealing, the original hot
phase is the failure mode. An annealed ensemble limited to 8 < 1 is most unlikely to
find the “working” mode unless it is allowed about a billion trials, and will wrongly
suggest “failure”, with Z = 0.01. Only if g is increased far beyond 1 to a million or
so would the ensemble be likely to find the working mode in fewer than thousands
of trials. Even then, the samples would crash inward and have to be annealed back
out through that factor of a million. And the evidence value would have been lost.

For nested sampling, which steadily tracks log X instead of trying to use the
slope, such problems are easy. All one needs is the determination to keep going for
the NH or so shrinkage steps needed to reach and then cross the dominant mode
with a collection of N objects. By then, the behaviour of log L as a function of
log X has been found, so that any distinct phases can be identified along with their
Bayes factors, as well as the overall evidence Z.
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5.3. Potts model

The Potts (or Ising) model is a two-dimensional rectangular model of atoms of two
changeable “colours” (A and B). The loglikelihood counts the number of bonds
between atoms of the same colour (A-A or B-B), with a coefficient set to the critical
value.

log L =log(1 + /2) x (number of A-A + number of B-B) (48)

This is always concave, but a wide swathe of it becomes almost straight as the
number of atoms increases. Figure 15 plots it for a coarse (18 x 18) grid, and
much of the curve is already nearly straight. Supercooling is never needed, but
a tiny change in temperature moves the bulk of the posterior from one end of
the straight section to the other. Because there is no actual convexity, this is an
example of a “second order” phase transition. It is difficult to anneal it properly,
but nested sampling moves steadily inward towards the fully-ordered states without
any difficulty, exploring intermediate partially-ordered states on the way.

| | | | order
—A—A—B—B—

. ] %
—B—A—B—B— o8

I 4
T ‘
—A—B—B—A—

| | | | disorder

0 T T
-200 -100 0

log X

Figure 15: Potts model (left), on 18 x 18 grid (right). The transition
region between disorder and order is almost straight.

Murray et al. (2006) have programmed this on a 256 x 256 grid using the Fortuin-
Kasteleyn-Swendsen-Wang exploration strategy (Edwards and Sokal (1988)), and
found the anticipated steady increase in order.
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6. CONCLUSIONS

Nested sampling is a new algorithm which reverses the traditional approach to
Bayesian computation by putting the evidence (a.k.a. marginal likelihood, prior
predictive) first. A conventional collection of posterior samples can be acquired as
the calculation proceeds, but that is an optional extra.

The algorithm proceeds by systematically constraining the available prior mass,
shrinking it geometrically under successively tighter lower bounds on likelihood.
The evolution path thus depends only on the shapes of the likelihood contours, and
is independent of the likelihood walues. This invariance enables nested sampling
to deal with convex likelihood functions, which define a class of problems that is
effectively denied to standard annealing. Nested sampling won’t solve everything,
because general multi-modality is and will remain difficult, but it promises to solve
more.

In a specific application, it is the user’s task to sample according to the prior
density subject to a hard constraint on likelihood value. Usually this will be accom-
plished by MCMC, where the hard constraint happens to give a similar restriction
on step-length to that applying in standard Metropolis-Hastings evolution. Ancil-
lary techniques such as importance sampling and slice sampling transfer straight-
forwardly to nested sampling. Hence, in those cases where annealing works and has
an efficient schedule, the new method should offer no great gain or loss of computa-
tional speed. Even so, nested sampling is more fundamental in that it gives a direct
view of the underlying density of states g*(L) as it steps steadily inward. It is not
thermal, but can simulate thermal properties at any temperature.

We do not address the errors that would arise from imperfect sampling of the
prior within a given likelihood contour. The uncertainties that arise from the method
itself, though, are understood and controllable. Numerical uncertainties accompany
estimates of evidence and any quantified property. These are well-founded prob-
abilistic estimates, not derived from any frequentist fixup. As usual, uncertainty
diminishes as /N, where N measures the amount of computation allowed, here
quantified as the number of objects being evolved. In short, nested sampling follows
the rules of probability calculus, as an algorithm for Bayesian computation should
do.

Compared with traditional methods, there seems to be no disadvantage to using
nested sampling, but there is demonstrable advantage in range of application, and
in its straightforward specification of uncertainty. It’s simple, and it’s general.
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APPENDIX

// NESTED SAMPLING MAIN PROGRAM IN ‘C’ by John Skilling, Aug 2005

//(GNU General Public License software (C) Sivia & Skilling 2006)

//

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <float.h>

#define UNIFORM  ((rand()+0.5) / (RAND_MAX+1.0)) // Uniform(0,1)

#define PLUS(x,y) (x>y 7 =x+log(l+exp(y-x)) : y+log(l+texp(x-y)))
// logarithmic addition log(exp(x)+exp(y))

/* YOU MUST PROGRAM THIS FROM HERE ++++++++++++++++++++ttttt++t++

#define n ... // number of objects

#define MAX ... // max number of iterates

typedef struct

ANYTYPE theta; // YOUR coordinates
double logL; // loglikelihood = 1n Prob(data | theta)
double logWt; // ln(Weight), summing to SUM(Wt) = Evidence Z
} Object;
double logLhood (ANYTYPE theta){...} // logLikelihood function
void Prior (Object* 0bj){...} // Set Object according to prior
void Explore(Object* 0Obj, double logLstar){...}
// Evolve Object within likelihood constraint
void Results(Object* Samples, int nest, double logZ){...}
// optional list of samples of weight exp(logWt-logZ)
-——- —— UP TO HERE */
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int main(void)

{

//

//
//

//

//

//
//

//
//

Object Obj[nl; // Collection of n objects
Object Samples[MAX]; // Objects defining posterior
double logwidth; // 1n(width in prior mass)
double loglstar; // 1n(Likelihood constraint)
double H = 0.0; // Information, initially O
double logZ =-DBL_MAX; // 1n(Evidence Z, initially 0)
double logZnew; // Updated logZ

int i; // Object counter

int copy; // Duplicated object

int worst; // Vorst object

int nest; // Nested sampling iteration count

Set prior objects
for( i = 0; i < n; i++ )
Prior( &0bj[i] );
Outermost interval of prior mass
logwidth = log(1.0 - exp(-1.0 / N));

NESTED SAMPLING LOOP +++++++++++++++ttttttttttttttttttttt++44+
for( nest = 0; nest < MAX; nest++ )

{

Worst object in collection, with Weight = width * Likelihood

worst = 0;
for( i =1; i < N; i++ )
if( 0bj[il.1logL < Objlworst]l.logl ) worst = ij;
Obj[worst] .logWt = logwidth + 0bj[worst].logL;
Update Evidence Z and Information H
logZnew = PLUS(logZ, Obj[worst].logWt);
H = exp(0bj[worst].logWt - logZnew) * 0bj[worst].logL
+ exp(logZ - logZnew) * (H + logZ) - logZnew;
logZ = logZnew;
Posterior Samples (optional)
Samples[nest] = 0bj[worst];
Kill worst object in favour of copy of different survivor
do copy = (int)(n * UNIFORM) % n; // force O <= copy < n
while( copy == worst && n > 1 ); // don’t kill if n =1
logLstar = Obj[worst].logl; // new likelihood constraint
Obj [worst] = Obj[lcopyl; // overurite worst object
Evolve copied object within constraint
Explore( &0bjl[worst], logLstar );
Shrink interval
logwidth -= 1.0 / N;
} // --— NESTED SAMPLING LOOP (might be ok to terminate early)
printf ("# iterates = %d\n", nest);
printf("Evidence: 1n(Z) = g +- Jg\n", logZ, sqrt(H/N));
printf("Information: H = Jg nats = jg bits\n", H, H/log(2));
Results(Samples, nest, logZ); // optional
return 0;



