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Nested Sampling

Figures by David MacKay.
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Figure 51.1. Contour plot of a
likelihood function L(θ).

John Skilling’s way of thinking about the integral Z =
∫

d
K

θ L(θ)π(θ)

Let x(L) be the prior mass enclosed within the contour L(θ) = L, and L(x)
be the contour value such that the volume enclosed is x.

Z =

∫

dx L(x).
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An example of L(x)

Let θ be a collection of G unknown binary variables θg ∈ {0, 1}, and let our
data be a list of G independent noisy observations of them – one observation
each. So the likelihood function will have the form

L(θ) ∝ exp





G
∑

g=1

bgθg



 , (51.1)

where the bg is the bias for θg towards or away from 1 (if bg is positive or
negative respectively). If all the noisy observations have the same noise level
then the magnitudes of the bg will be the same for all g.
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802 51 — Nested Sampling

Clearly the posterior distribution is separable. This is a very simple in-
ference problem, but it epitomizes some of the issues arising in more realistic
problems.

To connect to my chapter on sex, we can note that if all the bg happen to

be +b then the log-likelihood is proportional to the fitness F ≡ ∑G
g=1

θg that
I assumed there.

So, what does L(x) look like? The volume fraction x = 1/2G, is associated
with the unique maximum likelihood state. Moving away from that corner
of the hypercube, the log-likelihood increases in proportion to the Hamming
distance from that corner, and the number of states at Hamming distance d
is

(G
d

)

. Or, in terms of the fitness F , which is G − d, the number of states is
(

G
F

)

.
Figure 51.2 shows L(x) from various points of view, for the case where

the number of independent variables is G = 30. Of these graphs, 51.2(b)
is perhaps the easiest to relate to: flipping the two axes round, this graph is
almost exactly the cumulative normal distribution function, shifted and scaled.
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Figure 51.2. (a) L(x) as a function
of x for a toy problem with
G = 30 independent variables.
(b) log L(x) (also showing the
details of the plateaus of L,
omitted in (a)).
(c) log L(x), with x shown on a
logarithmic scale.

Notice that L(x) is a very sharply increasing function as x → 0. log L(x)
is locally a roughly linear function of log x (if we neglect the plateaus of L, so
locally we can think of L as behaving like a power law L(x) ' x−p, for some
p. For this example, a crude but useful description of the situation is that
halving the volume x increases log L(x) by a constant of order 1.



51.1: What is a typical sequence {xi} like? 803

Nested sampling

We start by drawing N points uniformly from the prior. Let N = 8, say.
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Figure 51.3. N = 8 points drawn
uniformly from the prior.

Roughly half of the points fall inside the shaded region corresponding to the
contour with x = 1/2. Roughly one quarter of them are inside the contour
associated with x = 1/4. Roughly one eighth of them are inside the contour
associated with x = 1/8.

We can associate each point θi with an x-value, namely the volume that
would be enclosed by the contour L(θi). Since the points are uniformly dis-
tributed under the prior, the N x-values are uniformly distributed between 0
and 1.
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Let x1 be the largest x-value. The typical value of x1 is something like
N/(N + 1) or e−1/N . (The former is its arithmetic expected value, the latter
its geometric mean.) We introduce a contour associated with this point.

Nested sampling now draws a new point, uniformly distributed in the re-
gion satisfying L ≥ L(x1). (We assume that this operation can be done,
perhaps by a Markov chain method, just as annealing methods assume that a
point can be drawn from the distribution ∝ Lβ.) The new point is shown by
the big purple dot.
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Figure 51.4. Replace the point at
x1 by a new point uniformly
distributed between 0 and x1.

We insert this new point and find among the N live points the biggest
x-value, x2. (Remember there’s a chance of roughly 1/N that the new point
might have landed between the second-biggest x and x1.)

These x-values are uniformly distributed between 0 and x1.
We don’t know the values of the volumes xi, but we do know their order,

since we know the values of L(xi) = L(θi).
At each iteration, the volume shrinks roughly by a factor of e−1/N .

�
51.1 What is a typical sequence {xi} like?
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Figure 51.5. (a) The arithmetic
and geometric means of xi for the
case N = 8; also, error bars on the
geometric mean,

exp(−i/N ±
√

i/N).

(b) A dozen samples from the
distribution of {xi}, for runs of
duration 2000 steps.
(c,d) Detail of (a,b).


