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Abstract

Theoretical estimates for lower bounds on the capacity of various insertion
and deletion channels are calculated by considering the rates achievable using
convolutional codes and sequential decoding. It is found that these limits fall
below the rates that can be achieved by the use of watermark codes over similar
channels. The sequential decoding procedure used is shown to be suboptimal,
but it is expected that a decoder which was able to take account of the phase
of received and transmitted sequences would lead to an improved lower bound
estimate for the capacity. However, it is unknown how this would compare to
the capacity estimation that watermark codes give.

1 Introduction

The problem of reliable communication over a noisy channel can be broken down into
several steps. The sender has information that they wish to convey to the receiver. To
do this the data is first put into compressed binary form, reducing the problem to that
of passing a string of ones and zeros over the channel and recovering it at the other
end. A noisy channel will insert errors into this data so the received string differs
from what was sent. In order to be able to recover the original data, the message is
encoded, adding degeneracy to it. This added degeneracy increases the number of bits
that need to be transmitted, and hence reduces the rate of communication possible
over the channel. The method of encoding is chosen so that the distortion introduced
by the noisy channel is small enough that the original data can be recovered. For a
noisy channel, there exists a non zero rate of transmission called the channel capacity
below which reliable communication is possible. Transmission at rates greater than
the capacity will result in errors after decoding.

This project looks at theoretical methods for calculating the capacity for channels
that introduce synchronisation errors. Synchronisation errors are insertions and dele-
tions of symbols, meaning the received string can differ in length to the transmitted
string. Synchronisation errors can occur in channels where the time of arrival of the
transmitted bit is unknown, examples include serial lines where the clock speed of
the transmitter may not be accurately known and hard disks, where the there may
be variations in the rotation speed.
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Previous work on channels with insertion and deletion errors using seqeuntial
decoding has been done by Gallager [1] 1961 and Zigangirov [2] 1969, leading to some
theoretical estimates of the channel capacity. This project looks closely at these limits.
More recent work by Davey and Mackay [3] uses watermark codes to communicate
over channels with synchronisation errors and have shown that these codes are able
to reach rates above the bound on channel capacity obtained by Zigangirov, (fig 1).
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Figure 1: Comparison of estimates of lower bounds on channel for an insertion and deletion
channel with zero probability of substitution. Taken from [3].

2 Background

2.1 Synchronisation channel models

The papers by Gallager, Zigangirov and Davey and Mackay all look at different types
of insertion and deletion channel and these different channel models are now com-
pared.

2.1.1 Gallager channel model

A bit of information passed across the channel emerges in one of four states. It is
transmitted correctly with probability pt, is deleted with probability pd, undergoes a
bit flip with probability ps, and is replaced with two random bits with probability pi.
The probability of correct transmission is pt = 1 − pi − ps − pd.

2.1.2 Zigangirov channel model

The channel model considered by Zigangirov allows any number of insertions to occur
in the gaps between each transmitted bit. The probability of no insertion is q1, one
insertion occurs with probability q1p1, two insertions with probability q1p

2
1, three with
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Figure 2: Insertion Deletion channel with probabilities Pi, Pd and Pt of insertions, deletions
and transmissions. The ’Transmit’ state makes a fraction Ps of substitution errors

probability q1p
3
1 etc. Each inserted digit is either a zero or a one with equal probability.

Summing these probabilities gives unity showing that p1 is the probability of at least
one insertion where q1 + p1 = 1.

As well as insertions occurring in the gaps between transmission, each bit sent
over the channel will be deleted with probability p2, the probability of no deletion is
q2 so that q2 + p2 = 1. In this model of the channel there is zero probability of a bit
flip occurring. This is not a fundamental restriction, but is made to keep the analysis
simpler.

2.1.3 Davey and Mackay channel model

This model is similar to that considered by Zigangirov in that any number of insertions
between each bit is possible, however bit substitutions can also occur. The symbols
to be sent over the channel are queued, waiting to be transmitted. For each channel
use, one of three events occurs. With probability Pi a random bit is inserted into the
received stream. With probability Pd the queued bit is deleted and with probability
Pt = (1 − Pd − Pi) the queued bit is transmitted. During this transmission a bit
flip will occur with probability Ps. Figure 2 shows a graphical representation of this
channel.

By setting Ps to zero it is possible to compare the probabilities of each outcome
for this channel to those for the channel considered by Zigangirov, see table 1. These
probabilities can be made equivalent by setting

p1 = Pi (1)

p2 = Pd/(1 − Pi) (2)

making the two channels identical.

2.2 Sequential Decoding and Tree Codes

As discussed, to reliably transfer data over a noisy channel it is necessary to encode
it. The receiver then decodes the noisy version of the signal and recovers the original
message. One type of code that can be used to do the encoding is a convolutional
code [4]. Convolutional codes have a tree structure as shown in fig 3.
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No. Insertions No.Deletions Prob (D and M) Prob (Zig.)
0 0 Pt q1q2

0 1 Pd q1p2

1 0 PiPt q1q2p1

1 1 PiPd q1p2p1

2 0 P 2
i Pt q1q2p

2
1

2 1 P 2
i Pd q1p2p

2
1

...
...

...
...

Table 1: Comparison of emission probabilities for the two different channel models as con-
sidered by Davey and Mackay and Zigangirov.
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Figure 3: Example of the tree structure of a convolution code, m=3. Taken from [4]
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At each node in the tree, the upper branch gives the symbols to be transmitted if
a zero is to be sent, and the lower branch those corresponding to a one. Once this is
done the encoder follows that branch to the next node and repeats the process. Each
branch has the same number of bits and this number can be increased to give reliable
communication over noisier channels. The encoder increases the length of the string
to be sent by a factor of m, where m is the number of bits in each branch. The rate
of a convolutional code is given by R = 1/m bits per transmitted symbol. There are
various ways in which the bits on each branch can be chosen, usually the transmitted
bits are a linear function of previous source bits. However, it shall be assumed here
that each bit is chosen randomly and is equally likely to be a zero or a one.

The job of the decoder is to deduce from the received string which path through the
code tree was followed, enabling the original message to be reconstructed. Sequential
decoding is a method of doing this. Each successive input bit is considered in turn.
The decoder compares the received string to the code tree following whichever branch
agrees best. As it goes it keeps a note of how much the path it is following differs
to the received string. The measure of this difference is some predefined likelihood
function. If the difference becomes greater than some specified threshold, the decoder
rejects that path and returns to the previous node to explore a different path. Once
this difference becomes smaller than some other specified value, the decoder accepts
that its initial choice of which node to follow was correct and decodes the first digit
accordingly. The process is then repeated for the next digit.

2.3 Watermark codes

Watermark codes work by identifying where insertions and deletions have taken place.
Consider writing a message on a piece of paper with a complicated watermark on.
The paper is then distorted during transmission. Provided the watermark is known
to the receiver, they can reconstruct the message by aligning the warped watermark
to its original state. It is important that the data not be too dense, otherwise it will
cover too much of the watermark for it to be reconstructed.

Watermark codes use an outer and an inner code. First the message is encoded
with the outer code which should be able to correct for substitution errors. The inner
encoding procedure involves this data being sparsified and added, bitwise, modulo
two, to a pseudo-random binary sequence, called the watermark, known to both the
encoder and the decoder. The received data is a warped and distorted version of the
original watermark. It is distorted by the addition of the data and by substitution
errors and warped by the insertions and deletions. The decoder then infers where
insertions and deletions have taken place by aligning the known watermark to the
received string. The difference between these strings is the decoder’s estimate as to
what the transmitted data was. This is fed into the outer decoder which infers the
original message.

In irregular watermark codes, the sparsification is non-uniform and it is expected
that irregular watermark codes can outperform regular watermark codes [5].
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3 Calculation of channel capacity

Having shown that the channel models considered by Zigangirov and Davey and
Mackay are equivalent, we now look to calculate a bound on the channel capacity
using tree codes and sequential decoding.

Suppose that the output of the channel is some received string b1, b2, ..., bn′ , ... and
the decoder is attempting to match this sequence to a path through the code tree
given by the string of digits a1, a2, ..., an, .... If we now assume that n − 1 symbols of
the branch have been matched to n′−1 symbols of the received string then a matching
is defined as an event whereby either the symbol an is put into correspondence with
the symbol bn′ , or an is deleted, or bn′ is deleted. The two symbols can only be put
into correspondence if they are identical. Each matching involves a choice between
these three options and there are an infinite number of ways of matching the received
sequence to a path through the code tree, for instance it possible to choose a method
of matching corresponding to every symbol sent being deleted and all the received
symbols having been insertions.

The correct method of matching is the one which strictly follows the pattern of
insertions and deletions which took place in transmission. This is done by taking the
path through the code tree that was transmitted a1, a2, ..., an, ... and deleting from it
all the symbols that dropped out. All symbols inserted during transmission are then
deleted from the received string b1, b2, ..., bn′, .... The remaining symbols are then put
into 1-1 correspondence.

To distinguish between all the different possible methods of matching a probability
function is introduced. Assume that the logarithm of the probability function having
matched the symbols a1, a2, ..., an−1 with the symbols b1, b2, ..., bn′

−1 is z. The next
step in the matching process is then the choice of which of the three options to follow.
If the matching is such that an corresponds to bn′ then the logarithm of the probability
function is increased by (α1 + β1). If an is deleted then it is increased by (α1 + β2),
and if bn′ is deleted it increases by β1. The initial value of z is set to zero, and this
value increases in steps with each matching event.

The sequential decoder then searches through paths in the code tree and calculates
the value of z for each method of matching. This process continues until the value
for at least one path reaches a (> 0). The decoder then accepts the symbol that
corresponds to the first branch of that path as the one which was transmitted. The
subtree is then deleted and the logarithm of the probability function is reset to zero
and the process repeated to decode the next digit. In addition, the decoder will
reject a path and method of matching if the logarithm of its probability function
drops below b (< 0).

3.1 Condition for Correct Decoding

We have correct decoding when a path in the correct subtree is accepted and we have
an error when a path in the incorrect subset is accepted. There are two conditions
which must be met for correct decoding. First, the matching of the correct path
to the received string must be such that the logarithm of the probability function
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reaches the value a before it reaches the value b and second there must be no path in
the incorrect subtree which reaches a, otherwise this path may be accepted ahead of
the correct one.

In order to ensure that the second criteria is met, it is necessary consider the
branches of the incorrect subtree. Consider a subset of these, Gn(ε), with the first n
symbols fixed, and the set of methods of matching these symbols with the received
sequence fixed so that the logarithm of the probability function, z for the common
part of these branches is ε. We then calculate L(ε, n), the expectation value of the
number of methods of matching belonging to Gn(ε) for which z reaches the threshold
value a (giving an incorrect decoding of the symbol) before it reaches b and is rejected.
Assuming that we transmit a large number of symbols so that the code tree becomes
infinite, we have

L(ε, i) = L(ε, i + m) = L(ε, i + 2m) = ... (3)

where as before m is the number of symbols in each branch. Having matched these n
common symbols with z = ε, the next operation in the matching process is to choose
how to match the next symbol in the received string with the (n + 1)th symbol in
the code tree. As before there are three options and z can be increased by either
(α1 + α2), (α1 + β2) or β1. In considering the incorrect subset, we assume that if the
two symbols are identical they are put into correspondence with one another. With
probability 1/2 the two symbols will be identical, increasing z by (α1 + α2) and with
probability 1/2 they will be different. L(ε, i) must be the same before and after this
matching operation giving the continuity equations

L(ε, i) = 1
2
L(ε + α1 + α2, i + 1) + 1

2
L(ε + α1 + β2, i + 1) + 1

2
L(ε + β1, i) (4)

which is valid for i = 1, 2, ..., m − 1, and

L(ε, m) = 2[1
2
L(ε + α1 + β1, m + 1) + 1

2
L(ε + α1 + β2, m + 1)] + 1

2
L(ε + β1, m)

= 2[1
2
L(ε + α1 + β1, 1) + 1

2
L(ε + α1 + β2, 1)] + 1

2
L(ε + β1, m) (5)

where the extra factor of two in this equation arises from the fact that there are two
branches to consider. The boundary conditions for these equations are

L(ε, i) = 0 ε ≤ b (6)

L(ε, i) = 1 ε ≥ a (7)

To solve this set of equations, look for solutions of the form L(ε, i) ≤ Ai2
λε,giving

A1 = 1
2
(2λ(α1+α2) + 2λ(α1+β2))A2 + 1

2
2λβ1A1

A2 = 1
2
(2λ(α1+α2) + 2λ(α1+β2))A3 + 1

2
2λβ1A2

...

Am−1 = 1
2
(2λ(α1+α2) + 2λ(α1+β2))Am + 1

2
2λβ1Am−1

Am = (2λ(α1+α2) + 2λ(α1+β2))A1 + 1
2
2λβ1Am. (8)
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This set of equations is solved by setting the determinant of the system equal to zero
and rearranging to give

1 = 2R−12λ(α1+α2) + 2R−12λ(α1+β2) + 2−12λβ1 (9)

Taking values of α and β which give rise to not more than two roots of this equation
gives

L(ε, i) ≤ Ai2
λ0ε + Bi2

λ1ε, (10)

which is an expression for the expected number of methods of matching a path in the
incorrect subtree to the received sequence which can give rise to incorrect decoding.
The constants Ai and Bi can be calculated from the boundary conditions.

From equations (4) and (5), and applying the boundary conditions (6) and (7), it
is possible to obtain the following bound,

L(0, 0) ≤ C 2−λ0a (11)

where C is some constant not dependent on a. L(0, 0) is the maximum number of
expected ways that can give rise to incorrect decoding so for the decoder to work it is
required that this be zero. As a is positive and can be made as large as required, the
condition that no branch in the incorrect subset of the code tree be accepted reduces
to having λ0 be real and positive. Therefore equation (9) must have positive real
roots.

3.2 Condition for decoding to finish

The second criteria that must be met if the decoder is to be successful is that analysis
of the correct subset of the tree be such that the correct branch is accepted, that is
that z reach the value a (and the branch be accepted) before it reaches b (and the
branch is rejected).

The logarithm of the probability function, z is initially set to zero and increases
after each matching event in one of three ways. For the correct path, the probabilities
of it taking these values is known. A correct transmission of a digit occurs with
probability q1q2, the correct method of matching will therefore increase by (α1 +
α2) with this probability. At least one insertion occurs during transmission with
probability p1 which is the probability that z will increase by (α1 + β2). Subtracting
these probabilities from one gives the probability that z increases by β1, which is q1p2

the probability of a deletion with no insertions. The value of z along the transmitted
branch using the correct method of matching undergoes a 3-way random walk, as
shown in figure (4).

Here the decoding procedure has been defined such that if both an insertion and
a deletion have taken place, the insertion will be matched first.

Now consider the probability that z is bigger that b, it can be shown [6], that

P (b < z) ≤

{

1, z ≥ 0

2−h1z, z < 0
(12)
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Figure 4: Illustrative diagram showing the three possible matching operations and there
probabilities

Considering this probability at each of the nodes in figure(4) gives the continuity
equation

1 = q1q22
h(α1+α2) + q1p22

h(α1+β2) + p12
hβ1 (13)

A comparison of this to equation (9), shows that the two equations are related
by the condition λ = 1 + h. By then choosing the α and β values such that the two
equations become identical, it is insured that both conditions for successful decoding
can be met. These values are set as

α1 = log2 2q1

β1 = log2 2p1

α2 = log2 q2 − R

β2 = log2 p2 − R (14)

For the decoding process to succeed, it is necessary that the random walk behavior
of z be such that the expectation value of its increase at each step be positive. Hence
it is required that

q1q2(α1 + α2) + q1p2(α1 + β2) + p1β1 > 0. (15)

Substituting in the values for α and β and rearranging gives

R0 = q−1
1 (q1q2 log2 2q1q2 + q1p2 log2 2q1p2 + p1 log2 2p1) (16)

which is an estimate of a lower bound for the channel capacity. This bound can be
improved by considering different methods of matching. The correct method, as used
here, strictly follows the pattern of insertions and deletions. However, a real decoder
need not do and can improve upon the limit. For instance a deletion followed by
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an insertion of the same symbol will be treated as a successful transmission. The
best method of matching is defined as the one which maximises the logarithm of the
probability function. We now attempt to alter the random walk process to represent
the best method of matching.

A first step is to take into account the effect of an insertion and deletion of
the same symbol. This occurs with probability 1

2
q1p1p2 and to match the received

string to the code tree the correct method uses two matching operations, the first
increasing z by β1, and the second by (α1 + β2). The best method uses only one
matching operation and increases z by (α1 + α2). It is therefore necessary to change
the probabilities associated with the increments in the random walk of z, considering
the first matching operation gives the continuity equation,

1 = (q1q2 + 1
2
q1p1p2)2

h(α1+α2) + q1p22
h(α1+β2) + (p1 −

1
2
q1p1p2)2

hβ1 (17)

in the same way as we arrived at equation(13).
As before, comparing with equation (9) gives the α and β values which allow both

decoding conditions to be met, and in this case they are

α1 = log2 2q1 − R

α2 = log2(q2 + 1
2
q1p1p2)

β2 = log2 2(p2) − R

β1 = log22(p1 −
1
2
q1p1p2). (18)

We now apply the condition that the expected increase of z be positive. To do
this equation (15) is altered to represent the decoder which treats the insertion and
deletion as a correct transmission (increases z by (α1 +α2)) as opposed to the correct
decoder which will increase z by (α1 + β2) + β1.

q1q2(α1 + α2) + q1p2(α1 + β2) + p1β1 + 1
2
q1p1p2[(α1 + α2) − (α1 + β2) − β1] > 0

collecting like terms,

q1(q2 + 1
2
p1p2)(α1 + α2) + q1p2(1 −

1
2
p1)(α1 + β2) + p1(1 −

1
2
q1p2)β1 > 0 (19)

.
Substituting in for α and β from equation (18) then gives a revised estimate of a

lower bound for the channel capacity of

R′ =
1

q1
[(q1(q2 + 1

2
p1p2) log2 2q1(q2 + 1

2
p1p2) + q1p2(1 −

1
2
p1) log 2q1p2

+p1(1 −
1
2
q1p2) log2 2p1(1 −

1
2
q1p2)]. (20)

It is expected that this limit can be improved further by adjusting for the prob-
ability of two deletions followed by two identical insertions and so on. However it
was found that adjusting for these in the same way gave only small increases to the
limit as the probability of the occurrences scales as (p2p1)

n where n is the number of
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Figure 5: Comparison of the three different estimates for the channel capacity.

insertions and did not reach the bound for capacity obtained by Zigangirov, [2] given
by

C ≥ [q1(1 + p1p2)]
−1[1 + q2

1p2 log2 q2
1p2 + p1(1 − q1p2) log2 p1(1 − q1p2)

+q1(1 − q1p2 + p1p2) log2 q1(1 − q1p2 + p1p2)]. (21)

These three estimates for the channel capacity are compared in figure (5) for the case
when p1 = p2.

All three of these estimates for lower bounds to the capacity of the channel, fall
short of the rates that the watermark codes can achieve [3]. We now investigate the
procedure used to achieve these limits in more depth.

3.3 Random walk behaviour

Consider the possible outputs from the channel that can occur with the transmission of
a single digit. These outputs, along with their probabilities and the resulting increase
in logarithm of the probability function using the correct method of matching are
shown in table 2.

No. Insertions No.Deletions Prob Increase in z
0 0 q1q2 (α1 + α2)
0 1 q1p2 (α1 + β2)
1 0 q1q2p1 (α1 + α2) + β1

1 1 q1p2p1 (α1 + β2) + β1

2 0 q1q2p
2
1 (α1 + α2) + 2β1

2 1 q1p2p
2
1 (α1 + β2) + 2β1

...
...

...
...

Table 2: Emission probabilities and increase in logarithm of the probability function for the
correct method of matching.
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At each step in the random walk z is increased in one of three ways with proba-
bilities q1q2, p1q2 and p1. These probabilities are the same for each step. To see that
this is correct, assume that during the transmission of our single digit, we had at least
one insertion. The correct decoder will first follow the branch that increases z by β1.
Now consider what the next step of the decoder will be. With probability q1q2 it will
place the next two symbols into correspondence. The probability of one insertion and
one deletion is q1p1p2, so once we have matched the insertion, the chance that the
next matching event will correspond to a deletion is q1p2. The remaining probability
is then 1 − q1p2 − q1p1p2 = p1, the probability of a further insertion.

However when attempting to model the behaviour of a real decoder the proba-
bilities for the increase in each step of the random walk must be changed. As well
as leading to different α and β values, the probabilities of following each branch are
different for different steps. As an example suppose we are using a decoder which
increases z by (α1+α2) for a deletion followed by an identical insertion, but otherwise
acts identically to the correct decoder. Now consider the matching process for a single
symbol. The first step in the walk will go to (α1 +α2) with probability q1q2 + 1

2
q1p1p2.

Now again suppose in transmission there was at least one insertion and the decoder
follows the branch which increases z by β1. The second step in the walk will now
increase z by (α1 + α2) with probability q1q2. So making adjustments in this way for
alternative decoders results in the different steps in the random walk having different
probabilities, making analysis complicated.

3.4 Different matching criteria

An alternative approach is to reconsider the matching process, and redefine a match-
ing operation to be a matching of a symbol in the code tree to a number of symbols
of the received string. We can then find a capacity estimate using this method. It
is expected that for the correct method of matching these two procedures will give
identical estimates. A calculation as before shows that both conditions for correct
decoding can be met by comparing the following two equations.

1 = 2R−1[2λ(α1+α2)(1 + 2λβ1 + 22λβ1 + ...) + 2λ(α1+β2)(1 + 2λβ1 + 22λβ1 + ...)] (22)

which comes from the calculation on the incorrect subset and

1 = q1q22
h(α1+α2)(1 + p12

hβ1 + p2
12

2hβ1 + ...) + q1p22
h(α1+β2)(1 + p12

hβ1 + ...) (23)

which is the result of the calculation on the correct subset. From here we can calculate
the α and β values and combine with the random walk criteria

q2(α1 + α2) + p2(α1 + β2) + p1q
−1
1 β1 > 0 (24)

to give an estimation of

R = q2 log2 2q1q2 + p2 log2 2q1p2 + p1q
−1
1 log2 p1

= q−1
1 (q1q2 log2 2q1q2 + q1p2 log2 2q1p2 + p1 log2 p1). (25)

This is an identical expression to that of equation (16), which shows that for the
correct method of matching, these two methods are equivalent.
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4 Capacity of the Gallager channel model

We now look to find a lower bound for the channel model considered by Gallager using
a similar method. Here there are four possible outputs of the channel for transmission
of a single digit. We define the matching operations as follows. Putting a symbol of
the received string into 1-1 correspondence with a symbol in the code tree increases
z by α. Deleting a symbol from the received sequence (ie identifying it as a symbol
inserted during transmission) increases z by β. Matching involving the deletion of a
symbol form the code tree increases z by γ. As well as these three operations, this
model of the channel allows substitutions. The matching operation which puts two
symbols into correspondence when a substitution has occurred is set to increase z by
δ. It is assumed that

α > 0, β < 0, γ < 0, δ < 0. (26)

Now consider the same two conditions which must be met for correct decoding. By
considering the set of tree paths and methods of matching in the incorrect subset
which could give rise to a decoding error, we arrive at the continuity equations

L(ε, i) = 1
2
L(ε + α, i + 1) + 1

2
L(ε + β, i + 1) + 1

2
L(ε + γ, i + 1)

+1
2
L(ε + δ, i + 1), (27)

L(ε, m) = L(ε + α, 1) + L(ε + β, 1) + L(ε + γ, 1) + L(ε + δ, 1). (28)

Note that a matching event corresponding to an insertion during transmission now
increases i to i + 1. This is because each insertion relates to a transmitted symbol so
identifying an insertion identifies a symbol in the code tree. In the model considered
above, the insertions come about in the gaps between transmission so this is not the
case.

We again look for solutions of the form L(ε, i) ≤ Ai2
λε which gives the set of

equations

A1 = 1
2
(2λα + 2λβ + 2λγ + 2λδ)A2

A2 = 1
2
(2λα + 2λβ + 2λγ + 2λδ)A3

...

Am−1 = 1
2
(2λα + 2λβ + 2λγ + 2λδ)Am

Am = (2λα + 2λβ + 2λγ + 2λδ)A1 (29)

Solving this system of equations gives the solution

L(ε, i) ≤ Ai2
λ0ε + Bi2

λ1ε (30)

where λ is the root of the equation

1 = 2R−1(2λα + 2λβ + 2λγ + 2λδ) (31)
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and the constants Ai and Bi can be found from the boundary conditions

L(ε, i) = 0 ε ≤ b (32)

L(ε, i) = 1 ε ≥ a (33)

As before it is possible to make the probability that a path in the incorrect subset is
accepted go to zero with a suitable choice for the value of a, provided that equation
(31) has real, positive roots.

The condition that the correct path be accepted gives rise to the equation

1 = pt2
hα + pd2

hβ + pi2
hγ + ps2

hδ (34)

Now set λ = h + 1 in order to ensure both conditions are met. Then we have

α = log2 2pi − R

β = log2 2pd − R

γ = log2 2pi − R

δ = log2 2ps − R (35)

Again we consider the random walk process of z if the correct method of matching
is followed. It is required that the expectation value of the increase of z with each
matching event is positive, therefore

ptα + pdβ + piγ + psδ > 0. (36)

Then substituting in for the α, β, γ and δ values from equations (29) and rearranging
the following bound on the channel capacity is obtained.

C ≥ 1 + pt log pt + pi log pi + pd log pd + ps log ps (37)

It is interesting that this estimate is identical to one which can be obtained by
considering assuming a discrete memoryless channel model.

Again it is expected that this limit can be improved upon by altering the method
of matching used along the correct path. For example an insertion followed by a
deletion will be decoded as error free transmission when the inserted symbols are
identical to those deleted. The probability of this happening in the transmission of
two symbols is 1

2
pipd, which is small compared to pt, so the improvement offered by

using the best method of matching will be small.
Setting ps = 0 enables a comparison of this capacity estimate to that for the

Zigangirov channel. With pi = pd = p1 = p2, the probability of correct transmission
of a symbol for the Gallagher channel is pt = 1−2pi, whilst for the Zigangirov channel,
pt = (1 − pi)

2 = 1 − 2pi + p2
i , so it is expected that the capacity of the zigangirov

channel is the larger of the two as is observed in figure(6).
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Figure 6: Comparison of the lower bounds for capacity of the two channels obtained using
the correct method of matching.

5 Discussion

It has been shown that an analysis of insertion and deletion channels using convo-
lutional coding to transmit the data and sequential decoding to recover the message
can lead to estimates for the channel capacity. These estimates are expected to be
lower than the actual capacity of the channel as they correspond to the use of a cor-
rect decoder which is not optimal for the reasons discussed. It is difficult to make
similar calculations for more realistic decoders because of the effect on the random
walk process of the logarithm of the probability function. The probabilities at each
step are dependent on the direction taken at the previous node, suggesting that some
form of conditional probability distribution should be built up.

It is possible to use the methods used here to produce estimates for the capacity
of different channels, including ones which allow substitution errors, the Gallager
channel being one example.

The improvements that were made to the correct decoder were unable to reach
the bound on capacity obtained by Zigangirov [2]. It is known that this bound aims
to take account of the phase of the received sequence to the code tree but beyond
this, it is unclear how the estimate was made.

For real insertion and deletion channels, synchronisation problems can be worse
when several consecutive 1s or 0s are transmitted, whereas in the limits calculated here
the insertion and deletion probabilities are not dependent on the previous transmitted
symbols.

Watermark codes, which allow communication at rates above these theoretical
estimates, use information about the phases of the two sequences which suggests that
a sequential decoding procedure that was able to do this could lead to a higher lower
bound estimate than calculated here.
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