SOLVING THE SATISHABILITY PROBLEM USING
MESSAGE-PAS3ING TECHNIQUES

S J. Pumphrey, May 2001 (Part 111 Physics Project Report)

A Bayesian message-passng technique, the sum-product algorithm, is described and applied to the satisfiability
problem, spedficdly 3-SAT. The results of this algorithm on randomly generated 3-SAT problems and standard SAT
test sets are discussed and compared with conventional techniques. The dgorithm is found to perform poarly in regions
of the parameter spacein which it is conventionally ‘hard’ to find solutions. Several adaptations to the basic sum-
product algorithm are thus examined in an attempt to improve its effedivenessin these regions. Finally, the successes
and fail ures of the dgorithm are discussed, and conclusions drawn asto the diredion of future research in thisfield.

1. INTRODUCTION

The propasitional satisfiability (or SAT) problem is one of the oldest and most reseached
problems in computer science and computational physics. It is one of the mgor problems in
machine vision, and has applications in many fields of artificial intelligence including natural
language parsing, task scheduling, 3D objed semantics, and logicd reasoning[12]. A tedchnique to
rapidly solve SAT problems would revolutionise the field of computational science However, such
an algorithm is thought imposdgble and the best achievable is likely to be amethod which finds a
solution most of the time.

The objedivein aSAT problem is to find an assgnment to a set of Boolean® variables such that a
logic statement abou those variables is ‘satisfied’, i.e. true. At first sight this can seam a fairly
abstrad problem, so consider the foll owing example[13):

You are chief of protocol for the embassy ball. The crown prince instructs you to either
invite Peru or to exclude Qatar. The queen asks you to invite either Qatar or Romania or
both. The king, in a spiteful mood, wants to snub Peru or Romania or both. Isthere a guest
list that will satisfy the whims of the entire royal family?

In this sSmple SAT problem, we can identify the three binary variables as whether or not Peru,
Qatar, and Romania aeinvited. The question can then be more ncisely stated: we want to find an
assgnment to P, Q, and R which satisfies the logic formula,

(PO-Q) UQUR O(-PIO-R), (1)

where the symbadls [J, [, and = correspondto the logicd operations anp, or, and noT, respedively.

In this case, the problem is © small that it can be quickly solved by brute force methods. we can
just try al the posgble asgnments until one satisfies the logic. For instance, let us dart by
attempting to invite dl three ourtries. This stisfiesthe aown prince s request that we invite Peru,
and the queen’s desire to invite both Romania and Qatar, bu we find that we can’'t fulfil either of
the king’swishes. If weinstead consider inviting Peru and Qatar only, we find that thisis a solution
to the problem; the logic is satisfiable. Note that a second solution exists, in which orly Romaniais
invited, and, for instance, if there were afurther restriction that we @uldn't invite both Peru and
Qatar, then thiswould become the unique solution.

This is a fairly contrived example, but it demonstrates one method for solving the problem: try
every possble asdggnment to the binary variables until the logic is stisfied. As the number of
binary variables increases, however, the number of possble assgnments increases exporentialy
and so even at fairly small numbers of variables, the problem quickly becomes intradable.

1 A Bodlean, or binary, variable, X, is one which takes the value x O {true, false} .

Logic Formula, F

E= (—IV]_] V2] V4)
O(=VsO Vs O-Ve)
O(Vi O-V50 Vi)
O(Vo O-Vs O-Vs)

Fig. 1. Example of the type of graph used in this investigation, and its formation from a 3-SAT problem. Six
propositions, { V4, ..., Ve}, (circles) are shown, conneded to four checks, {Zy, ..., Z4}, (squares) by arcs which are dther
‘normal’ (solid) or ‘negated’ (dotted). The value of a check is cdculated from an assgnment to {V;} by performing the
logicd or of al the mnneded propasitions, negating those conneded by ‘negated’ arcs. In a satisfying assgnment all
checks will betrue.

In order to compare methods for solving such problems, the cncept of computational complexity
is important. The usual way of spedfying this is to state how the time taken to solve aproblem
scaes with some measure of the ‘size’ of that problem. For instance, the number of steps to find a
solutionto a SAT problem, using the brute force method above, scdes as 2" and henceit is termed
‘exporential complexity’.

Two classes of computational complexity are of interest, cdled ‘P and ‘NP, where ‘P [0 ‘NF’,
andfor which it isbelieved ‘P’ # ‘NP’. Problems in which the mmplexity is poynomia (e.g. n, n?,
or even n°%) are members of class‘P’, and are treaed here & ‘easily’ solvable. The SAT problem,
however, along with many other ‘hard’ problems, isin the dass*NF’, and, more spedficdly, it has
been shown that it is NP-complete[4]. This is one of the most important types of computational
problems, since any one NP-complete problem can be conwverted to any other NP-complete problem
in pdynomia time. Hence a pdynomia time solution to the SAT problem would provide a
poynomia time solution to a host of other problems, including the travelling salesman
problem[16], automated computer chip design[7], and the general decoding problem for error
correding codes[18].

This investigation focuses on the gplicaion d Bayesian inference to the problem of finding the
most probable assgnment to the variables, given that the logic is stisfied. More spedficdly, the
tedhnique examined isto consider the Bodean variables as vertices on agraph, and the logic dauses
asanetwork of edges and ‘checks' conreding those vertices (seeFig. 1). The assgnment that most
likely satisfies the logic statements can then be determined by sending ‘messages along the elges
abou the probabiliti es of the variables being true or false given that the checks are true. An
anaysis of this tedhnique, and hav well it performs in comparison with more nventional
algorithms, forms the basis of this gudy, bu we will first describe the SAT problem in more detail
and review some standard approadies to its olution.

2. PROPOSITIONAL SATISFIABILITY
2.1 Terminology and Definitions

A logic function, or formula, is a general combination d Bodean variables (referred to as
propositions) and logicd operators. The same function can often be rewritten in severa different
forms, bu here we will always use conjunctive normal form (CNF). A function in conjunctive
normal form is composed of one or more clauses, joined by the anp () operator. Ead clause
consists of one or more literals, joined by the or ([)) operator, where ead literal is either a single
propasition a its negation (X or =X). For example, the embassy bal problem, eq. (1), is in
conjunctive normal form, where the three dauses are the wishes of the threeroyals.

Conjunctive norma form is useful in the antext of satisfiability since the dauses can be
interpreted as a set of separate logic statements which must be individually satisfied by the
assgnment. This approach then simplifies the cdculation o whether the formulais stisfied by an
assgnment, as ead statement istrueif any literal in that statement istrue.

A standard subclass of the propasitional satisfiability problem is the k-SAT problem, in which
ead logic dause mntains exadly k literals. For k = 2 the problem has a padynomial-time solution,
but for k > 2 the problem is NP-complete, and hence, withou loss of generality, we focus
exclusively on 3SAT.

In thiswork, we define N to be the number of propasitions and M to be the number of clauses. We
can then define, for a3-SAT problem:

e V={Vy, ..., \\} to bethe set of N propasitions.

o L={VyVy ..., VN, "V\} to bethe set of possbleliteralsfor V.

e C={Cy ...,Cy} to betheset of clauses, where C; = {l4, I, I3 0 L} isaset of threeliteras.
o Z={Z, ...,Zy} to bethe set of ‘checks, i.e. the values of { Ci} given an assgnment to {Vi}.

The am of the SAT problem isthus to find an assgnment to the {V;} such that the {Z;} are dl true.

A central theme of this investigation is the use of inference to help solve such logic problems.
Thisis atednique by which it is posgble to cdculate the probability of parameters, 9, given data,
D, andit is performed using Bayes' theorem:

P(D |6)P(6)

P@|D) = P(D)

: (2)

where P(6 | D) is known as the ‘ posterior probability’, P(D | 8) isthe ‘likelihood’, P(6) isthe ‘prior
probability’, and P(D) is a normali sing constant.

In terms of the SAT problem, we ae trying to infer the probabiliti es that the propasitions, {Vi}, are
true, given that the logic is stisfied, i.e. P(V; = true | Z; = true [Jj). Hence, we define the prior
probabiliti es, {g;}, asour prior knowledge of the probabiliti es that propasitions {V;} aretrue. Given
arandam SAT formula, we know nothing beforehand, in general, abou any satisfying assgnments
toV, and so we set eadh g to g = 0.5. Thisis known as using a non-informative prior.

2.2 Conventional SAT Solvers

Algorithms to solve the SAT problem can be described as either complete or incomplete.
Complete solvers are guaranteed to return a result as they explore the entire problem spacé, though
as a result they all suffer from a worst-case exporential computational complexity. Incomplete
solvers, on the other hand, may not find a result as they employ, in genera, heuristics and
randamness to guess likely assgnments, and then explore the locd problem space aound those
assgnments. On certain types of problem the incomplete dgorithms are good in that they find
solutions very quickly. In large, hard problems, however, it is quite possble that these solvers
‘miss the aeaof the problem space ontaining the solution andyield noresult.

Complete solvers do nd, generaly, attempt to attadk a SAT problem by trying al possble
assgnments. Instead, the most common approach, based uponthe technique of ‘backtracking’, is
cdled the Davis-Putnam-Logemann-Loveland (DPLL) procedure[5][17]. It works by assgning a
value to ead o the propasitions in turn, and, with ead assgnment, ‘removing’ that propasition
from thelogic. Thisisadieved by, for eat of the dauses the propasition appeas in, removing the
clauseif it is satisfied by the asggnment, or else removing the false literal from the dause. If, at any
point, an assgnment results in an empty clause, i.e. al literasin it are false, then it *badtradks' to

2 We use the term ‘problem space hereto refer to the state spaceof all possble assgnments.

Percent satisfiable

100 =T, 5,000
(a variables (b) variables
50 50
............... 0 S
30 4,000 30
751 20 -
——_10 3 ———10
o
g
5 3,000
50 £
o
§ 2,000
c
a
254 3
= 1,000
N
AN
N
\\\
0 T T T — 0
1 2 3 7 8 1
Ratio of clauses to variables Ratio of clauses to variables

Fig. 2. (a) Graph of percent satisfiable vsr for random 3-SAT. (b) Graph of median ‘cost’ of finding solutions vsr for
random 3-SAT. (Adapted from [13)]).

the last dedsion it made and tries a different one. Thiswill scan the entire problem space andiit is
more dficient than simply testing ead pcssble sssgnment, as it can prune whole branches off the
seach treewithou having to exploreto the leaves.

In contrast, most incomplete solvers implement a stochastic local search (SLS), in which a
randam initial assgnment is adjusted iteratively so as to satisfy as many of the dauses as
possble[14]. Some implement sophisticated heuristics as to which propasitions to adjust in eat
iteration, bu the overal effed isto explore the locd state space @aoundthe initial assgnment, and
they therefore do nd explore the whole seach tree

A gred ded of reseach has gone into methods for solving the SAT problem, and as a result many
complete and incomplete dgorithms exist. In order to compare the performance of different
algorithms (and to encourage more work on new agorithms), the ‘DIMACS challenge’ [8][15] test
sets were introduced. These @nsist of a number of hard satisfiability problems, which we will use
later in thisinvestigation as a benchmark for the message-passng SAT agorithm.

2.3 SAT Problem Characteristics

In the past decale, much work has gone into attempting to charaderise the behaviour of the SAT
problem as afunction d the parameters N and M. The difficulty has been that it appeasto be very
sensitive to how the dauses are dhasen, and, for a given method, sometimes the resulting problem is
very easy and sometimesit isvery hard[1]. For anything but the smallest N and M, it isnot passble
to try every possble cmmbination, and so it is necessary to resort to statisticd tedhniques.

The paradigm is to use ‘random 3-SAT’ formulas, in which the dauses are generated by choasing
three propasitions at randam from V, and either negating a propasition a not with probability 0.5.
If hundeds of such formulae ae then generated and tested, the arerage number with solutions is
foundto be a taraderistic function d N and M. It is observed that the behaviour depends on the
ratior = M / N, and that at a particular value of r, r = 4.3, the problem seems to undergo a phase
transition from always finding a solution to never finding one (seeFig. 2(a))[3][10]. For small r,
the problem is under-constrained and, as there ae many solutions, they are eay to find. For larger,
the problem is over-constrained and it is easy to show that asolution daesn’t exist. For r aroundthe
phase transition, havever, finding a result becomes very hard indeed, and a graph d the ‘cost’ of
finding a result shows a pe& (Fig. 2(b)). The discovery of this phase-transitional behaviour has
resulted in parallels being drawn between the behaviour of a SAT problem and severa physicd
systems, including ‘spin glasses'[2], and it is hoped that these comparisons will | eal to nowl
approadies to bah solving SAT and undrstanding the physicd systemsin the future.

3. MESSAGE PASSING

We here outline agraph-based treament of the SAT problem, in which the logic and propasitions
are aranged into a ‘belief network’ (also known as a Bayesian network), and the probabiliti es are
iteratively updated by message-passng along the alges. The spedfic dgorithm under study is the
‘sum-product algorithm’, which was first used by Gallager in 1963 onthe deaoding problem for
error correding codes[9]. The dgorithm as applied to the SAT problem is sketched below, with
emphasis primarily on pradicd aspeds (seeAppendix for some further mathematicd detail s).

3.1 Definitions

In this gudy, we mnsider the undreded hipartite® graph G{V, Z}, { Ea, Ep}) with vertices {V, Z}
and edges { E,, Ep}, where V and Z are & defined ealier*, and E, and E, are two dstinct sets of
edges, joining the V and Z vertices, and determined by the dauses, C. If propasition V; appeas un-
negated in clause C;, then the ac (V;, Zj) will bein E,, else, if it appeas negated in Cj, the ac will
bein E,. Thus, weidentify arcsin E; as‘normal’ andarcsin E, as ‘negated'.

We will neal to be ale to enumerate the acs at ea vertex, and, for ead arc on a given vertex,
we nedd to be ale to spedfy the index of that arc a& the cnneded vertex. For example, consider
Fig. 3(a) in which vertex V; has four arcs, and vertex Z; hasthree The‘'first’ arc & V; conreds to
Z;, bu it isthe ‘second arc & Z; which conredsto Vi. In arder to simplify the discusson below,
we introduce the following naotation:

let (i, j) be the index of the check conreded to node V; by the jth arc from V;,
let d(i, j) be the index of the node conreded to check Z; by the jth arc from Z;,
let (i, j) bethe index of the ac from Z;, j to V;, and

let f(i, j) be the index of the ac from Vyj, j) to Zi.

Using this natation, the example @ove can berewritten as: ¢(1,) =1l ande(l, 1) = 2.

Finally, we define the belief network on which the sum-product algorithm is to be performed as a
set of condtional probability vectors over G, where eab vertex is asociated with avedor, and eadt
element of that vedor is related to an arc conrneded to that vertex. Mathematicdly, we can
represent thisin the form B(G, {Q, R%}), where Q = { Q} are mnditional probability vedors for the
nodes, {V}, and R® = {R™}, for x O {true, false}, are mndtiona probability vedors for the
checks, {Z} (seeFig. 3(b)). Inthiswork, we define the exad meaning of Q and R as:

Qij = P(V; = true | dl information from conreded arcs other than j), and ©)]
R;% = P(Z; = true| Vg,) = X, al i nformation from conreded arcs other than). (4)

Fig. 3. (a) Example of enumeratingthe acs. (b) Example of abelief network (ovals represent the probability vedors).

% A bipartite graph is a network with two types of vertices, and with arcs that only conned vertices of different types.
4 We use, below, the term ‘node’ to refer exclusively to members of V, and the term ‘ check’ to refer to members of Z.

3.2 The Sum-Product Algorithm

As the vaues of the Z; depend onthe V,;, and \ce versa, in order to cdculate the posterior
probability it is necessary to updite the values of Q and R™ iteratively. The sum-product algorithm
adievesthis asfoll ows.

At the start of the cdculation, the Q; are initialised to the prior probability distribution, gi. There
are then two steps to perform ead iteration; the first updates R given Q, and the second caculates
Q given the new R¥. The cdculations are somewhat complicated by the eistence of ‘ negated’
arcs, which correspondto negating the mnneded propasition, bu are otherwise similar in charader
to those described in [18].

Step 1: This follows from the definition d R™ in eq. (4): for ead arc on a check, we want to
cdculate the probability that the check is true, given that the node on that arc has value x O {true,
false}. For example, for x = true, then if the acis‘normal’, this probability is 1, aherwiseit is1 —
P(not satisfied by the other arcs). The probability, Py, that check Z; is not satisfied by the kth
attached node, Vy(, k), depends on the (condtional) probability of that node being true, Qqg, Wi, k)
and whether or not the acis‘negated’:

_ DQd(i,k)f(i,k) 'negatecarck

P, = 5
“ %—Qd(i,k)f(i,k) 'normalarck ©)
After evaluating the probabiliti es Py, R;® can be cdculated as described abowe, i .e.:
. H-[1R« 'negatedarc] . H-[]1P« 'normalarc]j
R™ =0 !:! R™ =g l:! (6)
H 1 ‘normalarc j H 1 ‘negatedarc |

Step 2: The updating of the Q; is the step incorporating Bayes' theorem; the probability of V; being
true given that the checks are dl true is propationa to the probabiliti es of the checks being true
given V; true, which are the probabilities R{(),;,,- We thus cdculate the product of those
probabiliti es (excluding arc j), multi ply by the prior probability of being true, g;, and namali se:

(true)
Oi “ Rc(?f)e(i,k)
— %]
“(1- (false) (rue)
(1-g)“ Reiei o 9 ﬂ Rt kei0)
%] %]

Qj (7)

The final, and most important, part of the dgorithm is the method for caculating the posterior
probability of eat propasition being true given that ead clause must also be true. When applied to
a graph with nocycles (a polytree), and orce ®nwverged, the following cdculation yields the exad
paosterior probabiliti es:

Oi |_| RC(EI,JI?))e(i,k)
K
fal
(1_ gi)l_l Rc((i,lf)eg(i,k) *+0i |_| RC(EI,JI?))e(i,k)
K K

. =PV, =true|Z, =true L) = ©

Note that this time the product is taken ower all k; this can be dore with little extra dfort when
cdculating the Q; asin eq. (7).

When applied before anwvergence of the dgorithm, or on graphs with cycles, eq. (8) yields the
‘pseudopasterior probability’, which can be used to deted convergence Although na the exad
paosterior probability for graphs with cycles, it has been found ty MadKay in [18] to work well for
determining an assgnment (in which the exad probabiliti es do nd feaure).

4. IMPLEMENTATION AND RESULTS

Initially, the am was to code the sum-product algorithm for efficiency, and thus greamlined C
code was written which performed the basic dgorithm. During preliminary testing of this program,
however, it becane gparent that there were many parameters and configurations to explore ad so
the important fador becane the adaptability of the program. To this end, it was rewritten in C++,
using classes to separate distinct aress of the program and make danges easier and faster to
implement.

4.1 Algorithm Testing

In order to compare the performance of various adaptations to the sum-product algorithm, the
foll owing prescription for generating and testing SAT formulaewas used:

* It was dedded that the programs houd be tested onrandam CNF formulaewhich had at least
one solution. In order to generate these, a solution, Vecre, Was first randamly generated in
which ead propasition was true or false with even probability. Next, clauses were generated
by seleding three propasitions at randam and regating them with probability 0.5 ead.
Finaly, the dauses were then chedked to seeif they were satisfied by Vecre, and if nat they
were discarded. Oncethe dauses had been creaed, veeret Was discarded too.

« Theiterative step was performed upto 100 @ /M times, whichever was larger.
» Assgnments were generated from the pseudopasterior probabiliti es, p;, after ead iteration by:

_Otrue p; 205

= 9
Hralse p, <05 ®)

» The asdgnment was tested to seeif it satisfied the formula. If it did, then the cdculation was
stopped, and success was reported.

» A comparison between the {p;} this iteration and those of the previous iteration was made. If
no change (to two dedmal places) was deteded for 4 iterations, the cdculation was gopped
andfailure reported, as it was asaumed that the dgorithm had readed a stable state which was
not a solution to the problem.

» If theiterations were completed and yet no solution found,failure was reported.

 To explore the parameter space results were gathered for a wide range of M (spread
exporentialy between 2and 100000], and for N = 10, 20, 50, 100and 1000. For ead N and
M, 100results were obtained, so asto give an ouline of the statisticd properties.

4.2 Presentation of Results

As the dgorithm design and testing processes for this investigation were dosely linked, the
method and results are presented together for ead variation d the basic dgorithm. Six variants are
described, and to help minimise cnfusion, they will ead be given an identifier of the form:
SAT<nane>, where <nanme> isalabel related to the method sed.

iy

o

o
|

T 90
3
w— 80 4
(2]
©
= 70+
o SATbasic
5 604 - N=10
? N=20
& 501 N =50
£ 40] —=N=100
:5 —>¢ N=1000
o 30 -
(o]
©
S 20 -
3]
& 10
0 .
0.01 0.1 1 10 100
M /N
100 PHO@MIRREDEEEH ST im0t —
4 [] A DY -
(b) X Ry -
- 90 4 X \ AR 4 *e |
c \ \ / |
= v \ \ / |
2 gp | X ol N / !
@ \ \ b K i
E 70 SATbaiic ‘\‘ \ \Q\ /o I:
S N - 10 ! 3 » 34 !
5 60 - N=20 \ \ \ / !
3 N =50 y .\‘ AN P :
" * \ N 0//, |
© 50 - N =100 ' \ AP :
3 N = 1000 \ Ll se. e :
E 40 '. \ |
= SATnolog \ \ !
o 304 ~* N=10 X) |
= N=20 \ \ :
S 20 - N=50 i \ A
S -m- N=100 \ \ Muip
o 101 -x- N=1000 X - s
0 Nese Ll

0.01 0.1

Fig. 4. (a) Graph of percentage of times a solution was found against M / N for saTbasic. (b) Graph of percentage of

100

10000

WESTTENTEEAE IR E - S -

1000 10000

times a solution was found against M / N for saTnolog, with the points for saTbasic plotted as a wmparison. (NB.

Thelines are just to guide the eyes and help distinguish trends.)

4.3 Basic Sum-Product Algorithm

Initial tests of the basic dgorithm disclosed severa difficulties linked to floating point errors’,
including a aiticd problem occurring when the number of conredions to ead node was too large:
the products of R;™® and R;™* coud bah bemme zero, hence making eq. (7) undefined. This
problem was overcome in two ways: first, attempts were made to stop the Q;; becoming too close to
0 or 1 by limiti ng them to between 10° and 1 — 1@, and send, instead of using probabiliti es, the
algorithm was adapted to use the logarithm of the probabiliti es. This all owed the products of Rij("“e)
and R;"% to bah be very small, bu still retain acaragy when namalised. Thus, this method
gives the best possble acaracy for the probabiliti es, and will be referred to as saTbasic, whilst
the version nd using logarithms will be cdled SATnolog. The resultsfor SATbasic are shownin
Fig. 4(a), and a comparison d the two methods hown in Fig. 4(b). It was observed that although

using logarithms yielded a slower agorithm, it al owed a greaer range of M / N to be explored and

was ‘truer’ to the origina sum-product algorithm. It was therefore dedded to use saTbasic asthe

base for further investigations.

> A floating-point error is aby-product of the limited predsion with which red numbers are stored on a mwmputer.

4.4 Improving the Algorithm

The tharaderisation d saTbasic, Fig. 4(a), reveded a fallure to find the solution around the
‘hard’ regions of the problem space(M / N = 4), and a number of approaches were cnsidered in
order to improve its performancein thisarea Investigating in detail the behaviour of saATbasic on
‘hard’ problems, it was naticed that the sum-product algorithm exhibits two main types of
behaviour:

» Unstable: the pseudopasterior probabiliti es change grealy from one iteration to the next. In
some caes, they end uptaking only values very close to 0 a 1, at which pant the pattern
might sometimes repea a ¢ycle of moves or otherwise evolve in a seemingly chaotic fashion.

« Weak decisions. the pseudopcsterior probabilities are dose to 0.5, and the system is
effedively ‘unsure’ asto what assgnment to make.

To attempt to ded with these behaviours, two dfferent algorithms were developed. The first
addreses the problem of we& dedsions by chocsing a few propasitions which have
pseudopgsterior probabiliti es furthest from 0.5, and ‘fixing’ them to the doser of O or 1 by setting
their prior probabiliti es. The iterations are then al owed to continue, and the hope is that by making
a dedsion, we have resolved whatever conflicts were caising the sum-product algorithm to be
uncertain. Care has to be taken in making the coice of which ores to fix, however, since the
system may be in the ‘unstable’ regime, and probabiliti es furthest from 0.5 may be in a state of flux.
Therefore, this ‘fixing' agorithm, which we shall refer to as saTf, ranks the propasitions by the
following (arbitrary) measure:

(5-s)+(0.5- f,/200)+[0.5- p, (10)

where s [0 {0, ..., 5}is a measure of the stability of the propasition, O keing stable, and 5 keing
unstable, and f; is the number of flips of assgnment (out of 100) this propasition hes undergone.
The 3% of propasitions with the lowest value of this measure ae then ‘fixed’. saTf then continues
this running and fixing until two thirds of the propasiti ons have been fixed before returning failure.

The second attempt to improve the behaviour of the sum-product algorithm involved changing the
prior probability for all propasitions, g, from 0.5, to seeif the wee dedsions and instability were
reduced. This adaptation, referred to as saTg, attempts to solve eab SAT formula with a range of
g between 0.2and 0.8. A comparison d the performance of saTg, SATf, and SATbasic iS rown
in Fig. 5, below. It is clea from these results that both saTf and saTg performed better than
SATbasic in most cases, and that of those two, saTg was generaly the superior. In order to shed
some light onwhy this might be, we next investigated the prior probabiliti es in more detail .

4.5 Prior Probabilities

The doice of prior probabiliti es, g, was discussed in sedion 2.1,and it was dedded that for
random CNF clauses it was best, mathematicdly, to chocse the nornrinformative prior; g = g = 0.5.
Now consider what we know if we ae aeding the dauses acwrding to the prescription in sedion
4.1. If aparticular propasition, X, in Vegrer Were true, then if a dause is creaed with the literal X in,
it would always be acceted. A clause with =X in, havever, would orly be acceted if one or both
of the other two literals is true, which occurs with probability 0.75. Hence for M / N large (many
clauses concerning ead propasition), ore might exped more dauses to contain X than -X. The
converseis, of course, trueif Xisfalsein Veret.

To investigate this problem, saTbasic was adapted to use thisinformationto ‘cheda’ by courting
the numbers of V; and =V, in the logic, and setting its prior probabiliti es as foll ows:

Percentage of times a solution was found

Percentage of times a solution was found

iy

o

o
1

90 4
80 4
SATbasic
70 4 N=10
N=50
60 - N = 1000
50 { SATE
-o- N=10
40 4 N=50
-+- N=1000
30 4 +
SATg
201 —— N=10
N=50
101 - N=1000
0 T T
0.01 0.1 1 10 100 1000 10000
M /N
100 — = » wwEm B === 50— —— e e S B T e i e S e B A R A
% 7
90 - v A a
\
o
80 vt !
\‘ .’I
70 4 \ !
. \ "/ g
60 SATbasic ﬂi' |
N=20 \ !
\ n/
50 ~ N =100 \ = !
]
SATE \ i
40 4 !
N=20 “?\ ;
304 -=- N=100 \ ¥ o
SATg | /I
20 1 N =20 wt o/
104 —= N=100 \\ g
\ - a/
0 T T QEM-E- T T
0.01 0.1 1 10 100 1000 10000
M /N

Fig. 5. Graphs of percentage of times a solution was found against M / N for saTbasic, SATE, and saTg. For clarity,

the results have been plotted on two separate graphs, and it should be clear that saTg generally outperforms the other
two algorithms. (NB. Thelines are just to guide the eyes and help distinguish trends.)

lower or higher number of true-valued propositions in the satisfying assignment, but the agorithm
seems to not be sensitive to changes in this variable. This goes some way towards explaining the
success of saTg. By varying g, we effectively run the sum-product algorithm a number of times

g = E).Z (#of\/i)<(#of =Vi) —1)

(0.8 (#of V,)>(#of (-V)) +1)

B).S otherwise

(11)

The results of this variant, SATcheat, are shown in Fig. 6(a) below, and are somewhat surprising;
there seems to be very little difference between the results of saTcheat and SATbasic.
Investigating further, saTbasic was used to analyse the effect of varying g for two different N and
M (see Fig. 6(b)). The resulting distribution of finding a solution against g is clearly uniform over
most of the range, which is perhaps strange, as physically alow or high g corresponds to expecting a

(with a dlightly different start condition each time) and thus it performs better than saTbasic,
which only runs the algorithm once. It would appear that the more timesiit is run, with varying start
conditions, the more likely it isto find a solution. This is demonstrated in Fig. 6(c), which shows

10

100 peomaaxre

Percentage of times a solution was found

9] @
80
SATbasic

70 4 N=10

N=20
60 1 N =50

N =100
501 N = 1000
40 { SATcheat

——N=10

30 A N=20

N=50
201 s N=100
10 —¢N=1000

0
0.01 0.1 1 10 100 1000 10000
M /N
100 100 -
90{ (b N =10, M =40 N=20,M=80
+ data + data

80 A —e— average —e— average

S steps

401 o2
-u 4

30 4 8

20 16
—— 32

Percentage of times a solution was found
Percentage of times a solution was found

0 T

100

M1/0N

Fig. 6. (a) Graph of percentage of times a solution was found against M / N for saTcheat. (b) Graph of percentage of
times a solution was found against g for saTbasic for two values of N and M (10 sets of data each). (c) Graph of
percentage of times a solution was found against M / N for saTg, for N = 10, and varying the number of stepsin g used.
(NB. Thelines are just to guide the eyes and help distinguish trends.)

the results for saTg of varying the number of steps in g used to go between 0.2 and 0.8. We
observe that as the number of steps increases, the percentage of times a solution was found
increases.

4.6 Benchmarks and Comparisons

We can see from Fig. 5 that, of the algorithms discussed so far, SaTg performs best in most cases.
It was therefore chosen as the algorithm to test against standard SAT benchmarks. In order to put
the results in perspective, the test sets were also attempted by the state-of-the-art incomplete solver,
walksat[21]. The benchmarks used were the following selection of test sets, available from
internet satisfiability sites:

 DIMACS: two sets of DIMACS[8] problems were tested: AIM, artificialy generated random
3-SAT instances (only the satisfiable set), and LRAN, large random 3-SAT instances.

o uf250: 100 uniform CNF 3-SAT instances with N = 250, M = 1065, from SATLIB[20].

» n50cnf: 50 uniform CNF 3-SAT instances with N = 50, M = 215, from [11].

11

Percentage of times a solution was found

The results are dlightly disappanting; saTg solved nore of the AIM, LRAN, or uf250 sets, and
only 10% of the n50cnf set. In contrast, walksat solved 5% of AIM, 2 ou of 3in LRAN, and
9% and 98 of uf250 and n50cnf respedively. Note, howvever, that al these sets are in the *hard’
region, M / N = 4.3, and that they were aeaed by generating randam 3-SAT and seleding the
instances found tardest by some complete solvers.

Despite the poa performance of saTg on the hardest problems, we have shown abowe that the
message-passng approadh works very effedively on the high and low regions of M/ N, and it is
thought that it shoud be possble to creae enhanced adaptations of the dgorithm with improved
performancein the hard region.

4.7 Backtracking

To determine if this was indeal the cae, the final part of this investigation involved creding
hybrid schemes, i.e. using the sum-product solver as a heuristic in some standard complete
algorithms. Thisisalargefield, havever, and it was only possble to focus on ore technique in the
time avail able: the DPLL agorithm described in sedion 2.2. The sum-product algorithm was used
at ead step to determine which of the propasitions was the ‘best’ to fix, and which value to fix it to.
In order to compare the resulting program, SATb, on a level footing with the previous methods,
however, it was necessary to first ‘remove’ the completenessof the dgorithm (and so reduceit to
polynomial time) by limiti ng the number of badtrads to 50. This allowed the dgorithm to make
only 50 incorred dedsions before returning failure, and hence the resulting performance is a good
indication d the dfediveness of the sum-product algorithm as a heuristic. The results are
summarised in Fig. 7 below, and it is clea that saTb outperforms the other sum-product-based
algorithms tested above. We suggest that the performance of saTb might be improved by using the
sum-product algorithm to assgn values to more than ore propcsition at a time. A further
enhancement would be to make use of the information gained ead time an inconsistency arises,
perhaps by introduwcing some extra checks into the belief network indicaing that a successul
assgnment islikely to be diff erent to the fail ed assgnment.

100 »Ea0@ACIeEE@aeE e e aEm e

90 A

[00)
o
1

70 -+

6071 samp

—— N=10
N=20
N =50

—=— N=100

—> N=1000

50 A

40

30 A

20 -+

10 A

0 T T ¢

0.01 0.1 1 10 100 1000 10000
M /N

Fig. 7. Graph of percentage of times a solution was found against M / N for SaTb, to the same scde as Figs. 4 & 5. For
N =1000and M / N > 4, it was necessary to reduce the number of runs per data point from 100to only a few to speed up
data wlledion, and hencethose data points have agreaer scater. The range of M / N for which this algorithm is useful,
however, is clealy much larger than previous algorithms. (NB. The lines are just to guide the eyes and help distinguish
trends.)

12

5. DISCUSSION

Graph-based techniques for solving logic problems, though well established and d significant use,
are often owerlooked by reseachers. The original Davis-Putnam algorithm[6] for solving SAT
problems was in fad graph-based, bu was then developed into a purely logic-based badktradking
algorithm (DPLL). Recent work on developing the original graph-based methods has met with
some success and aff orded some insight into the behaviour of SAT problems, though the research
is gill at an ealy stage[19].

We saw abowe that the graph-based algorithm in this investigation, though good for under- or
over-constrained instances, performs poaly in regions of the parameter space where it is
conventionally hard to find solutions; Fig. 4(a) shows saTbasic failing to find a solution for a
range of M/ N, centred onM / N = 5, which grows as N isincreased. Some of the adaptations to the
basic dgorithm, spedficdly saTg and SATb, perform much better in these regions, bu it would
appea that these methods dill fail to solve the hardest SAT problems. Despite these problems, we
believe that such Bayesian techniques can be very valuable in that, if the pseudopasterior
probabiliti es converge to a stable solution, they convey information about how every propasitionis
affeded by every other propasition. Such a hdlistic goproach to the problem has been ladking from
the field for many yeas, and could provide apowerful tod for analysing SAT problems effedively.

More reseach is undoultedly needed into methods to help the dgorithm converge on a stable
solutionthough, and some paosshiliti es include:

» Post-processing: A brief study of ‘post-processng’ the output of the sum-product agorithm
was undertaken for this discusson, in which the pseudopgsterior probabiliti es were used as a
heuristic in a wnventional badktradking search. It was foundto work well for small N, bu
was dmetimes very sow for larger N, indicaing that the heuristic was not particularly
effedive. As a further investigation, it would be interesting to consider the gplicaion o
stochastic locd seach methods to the assgnment generated by sSaTbasic. Thiswould show
whether the dgorithm is getting ‘close’ in problem spaceto a satisfying assgnment.

* Problem structure: A fundamental difficulty with the dgorithm is that it was designed for
palytrees, whereas auniform SAT problem at the phase transition produces a dense graph with
many cycles. This density of conredions is likely to be the main cause of failure of the
technique, and it may be worth considering if any other message-passng algorithms are more
suited to the types of graphs generated by such problems. Ancther aternative would be to
investigate the diff erent structures of networks generated from non-uniform SAT problems. In
particular, some red-world SAT problems have graphs with fewer cycles and the sum-product
algorithm may work particularly well on problems of these forms.

» Update schedule: It is posgble that the dgorithm suffers from problems due to al the
messages being passed synchronously. A brief investigation d asynchronous message-passng
was caried ou and nosignificant diff erencewas observed, bu the results were inconclusive.

» Backtracking with inferencee As mentioned in sedion 4.7,it seams likely that the
performance of saTb or similar would be gredly improved by inferring information when
inconsistencies or fail ures arise.

Even if it is found to be ineffedive in finding satisfying assgnments, the message-passng
technique studied here is patentially still useful in that it gives a new perspedive on the problem,
and it shoud be possble to analyse why the dgorithm fail s and thus gain insight into what makes a
‘hard’ problem hard.

The @owe investigation was very time-limited, and it was nat possble to perform more than a
small fradion d the possble experiments on the dgorithm. We have discussed some possble

13

diredions for future reseacch, bu it is worth also considering some extensions to the work caried
out. In particular:

Unbiased CNF: It would be useful to gather a set of results using an unbased logic-
generation algorithm in which a satisfied clause is discarded a quarter of the time, though it is
expeded that thiswould na have avery grea effed onthe forms of the graphs.

Number of iterations: A series of experiments determining the numbers of iterations required
for convergence would be worthwhile. The coice of 100 iterations was amost arbitrary in
this gudy, and it may be that this was too many or too few and that by changing the number of
iterations it could be possble to improve the dgorithm'’s performance

Tweaking parameters: saTf and SATb have tuneable parameters in the measure used to
rank the nodes, eq. (10). Experiments to adjust this equation could result in improved
performancefor both of these dgorithms.

6. CONCLUSIONS

In this investigation, we have succesully explored the behaviour of not only the basic sum-
product algorithm but also severa adaptations, and demonstrated that they solve the SAT problem
well for awide range of M / N. We have shown that such agorithms on their own are not sufficient
to tackle hard SAT instances (M / N = 4), bu, in the process this gudy has reveded several possble
areas for future reseach which may lead to either significant improvements in performance or an
insight into the nature of hard SAT problems.

REFERENCES

[1]
[2]
[3]
[4]
[5]
[6]
[7]

[8]
[9]

[10

[11]
[12]

D. Achlioptas, C. Gomes, H. Kautz, and B. Seman, “Generating satisfiable problem
instances,” Proc. AAAI-2000, 2000.

G. Birola, R. Monasn, and M. Weight, “A variational description d the ground state
structure in randam satisfiability problems,” Eur. Phys. J. B., vadl. 14, pp. 554568, 2000.

P. Cheeseman, B. Kanefsky, and W.M. Taylor, “Where the really hard problems are,” Proc.
[JCAI-91, vd. 1, pp. 331337, 1991.

S.A. Cook, “The complexity of theorem-proving procedures’, Conference Record of the Third
Annual ACM Symposium on the Theory of Computing, pp. 1531158, 1971.

M. Davis, G. Logemann, and D. Loveland, “A madine program for theorem proving,” Comm.
ACM, vd. 5, no. 7, pp. 39897, 1962.

M. Davis and H. Putnam, “A computing procedure for quantification theory,” J. ACM, vd. 7,
pp. 202215, 1960.

S. Devadas, “Optimal layout via Bodean satisfiability,” Proc. Int. Conf. on Computer-Aided
Design (ICCAD), pp. 294297,Nov. 1989.

DIMACS challenge: http://dimacs.rutgers.edu/pulychall enge/satisfiabilit y/benchmarks/cnf/
R.G. Gallager, “Low density parity chedk codes,” no. 21in Reseach Monograph Series.
Cambridge, MA: MIT Press 1963.

[.P. Gent and T. Walsh, “The SAT phase transition,” Reseach paper 679, Department of Al,
University of Edinburgh, 1994.

J. Gottlieb: http://www.in tu-clausthal .de/~gottli eb/benchmarks/3sat/

J. Gu, PW. Purdom, J. Franco, and B.W. Wah, “Algorithms for the satisfiability (SAT)
problem: asurvey.” Preliminary version, 1996.

14

[13]
[14]

[19]
[16]
[17]
[18]
[19]

[20]
[21]

B. Hayes, “Can't get no satisfadion”, Am. ci., val. 85, no. 2, pp. 16812,Mar. 1997.

H.H. Hoos and T. Stutzle, “Towards a charaderisation d the behaviour of stochastic locd
seach agorithmsfor SAT,” Al, val. 112, pp. 21232, 1999.

D. Johrson, and M. Trick, eds. “DIMACS series in dscrete maths and theoreticd computer
science” AMS, vadl. 26, 1996.See 4so, [§].

E.L. Lawler, JK. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, eds. “The travelling
salesman problem.” JohnWiley & Sons, New York, 1985.

P. Liberatore, “On the complexity of choasing the branching literal in DPLL,” Al, vdl. 116, pp.
315326, 2000.

D.J.C. MaKay, “Good error-correding codes based on \ery sparse matrices,” |IEEE Trans.
Inform. Theory, vd. 45, no. 2, pp. 39831,Mar. 1999.

I. Rish, “Efficient reasoning in graphicd models,” Ph.D. thesis, University of California,
Irvine, 1999.

SATLIB: http://www.intell ektik.informatik.tu-darmstadt.de/SATLIB/

B. Selman, H. Kautz, and B. Cohen, “Locd seach strategies for satisfiability testing,” Cliques,
Coloring, and Satisfiability: Second DIMACS Implementation challenge, Oct. 1993, pubshed
as[15].

15

APPENDI X

Here we formalise some apeds of the discusgon in sedion 3 d the main text. As described in
83.1,we onsider the undreded hipartite graph G({V, Z}, { Ea, Epn}) with vertices {V, Z} and edges
{Eq Ep}, where V={Vy, ..., \\} isaset of N Bodean variables, Z = {Z;, ..., Zy} isaset of M
Bodean variables, and E,, E, 0 V x Z are two distinct sets of edges joining the V and Z vertices.
The set V represents the N propasiti ons, and the set Z represents the Bodlean value of the M clauses.
The sets of edges are related to the logic formulafor the spedfic SAT instance, in that:

Ea={(Vi,Z)|VviOC}, (12
and E, ={(Vi, Z) | (-V)) OCj}. (13)

If anarc (V;, Zj) O (Ea O Ep), we say that V; and Z; are connected. We can now define:

a(i) ={j (v, Z) O Ed} (14
and b(i) = {] | (Vj, Z) U Es} (19

asthe sets of indices of al V; conreded to vertex Z; by arcsin E; and E,, respedively. These can be
used to expressmathematicdly how the values of Z; are cdculated from an assgnment to V:

Z = |:| W) O |:| (=W, (16)

k O a(i) k O b(i)
where the ‘big-[7 notation takes the logicd or over its arguments. Furthermore, we can nowv
predsely define the condtionsfor ‘negated’ and ‘normal’ arcsin egs. (5) and (6) as:

‘negated’ arck < d(i, k) O b(i) (17
‘noma’ arck <= d(i, k) Oa(i) (18

Finally, it is worth briefly mentioning an efficient way of performing the prodicts in eq. (7); the

forward-backward algorithm. Let F*¥ and B® be four vedors of length L, where x O {true, false}
and L isthe number of arcsonnode Vi. The dements of the vedors are given by:

j
F =T R (19
j I:! (1 K)ei k)

L
Bj(x) = |_I Rc(é(i),k)e(i,k) (20

k=L-(J-1)
We nedal only to cdculate these dements once, and then we can efficiently cdculate:

B =1
!_I Rc(é(i),k)e(i,k) = %:L(ﬁ j=L (21)
#] %:

KWBY, otherwise

16

