
1

SOLVING THE SATISFIABILITY PROBLEM USING
MESSAGE-PASSING TECHNIQUES

S. J. Pumphrey, May 2001 (Part III Physics Project Report)

A Bayesian message-passing technique, the sum-product algorithm, is described and applied to the satisfiabilit y
problem, specifically 3-SAT. The results of this algorithm on randomly generated 3-SAT problems and standard SAT
test sets are discussed and compared with conventional techniques. The algorithm is found to perform poorly in regions
of the parameter space in which it is conventionally ‘hard’ to find solutions. Several adaptations to the basic sum-
product algorithm are thus examined in an attempt to improve its effectiveness in these regions. Finally, the successes
and failures of the algorithm are discussed, and conclusions drawn as to the direction of future research in this field.

1. INTRODUCTION

The propositional satisfiabilit y (or SAT) problem is one of the oldest and most researched
problems in computer science and computational physics. It is one of the major problems in
machine vision, and has applications in many fields of artificial intelli gence, including natural
language parsing, task scheduling, 3D object semantics, and logical reasoning[12]. A technique to
rapidly solve SAT problems would revolutionise the field of computational science. However, such
an algorithm is thought impossible and the best achievable is li kely to be a method which finds a
solution most of the time.

The objective in a SAT problem is to find an assignment to a set of Boolean1 variables such that a
logic statement about those variables is ‘satisfied’ , i.e. true. At first sight this can seem a fairly
abstract problem, so consider the following example[13]:

You are chief of protocol for the embassy ball. The crown prince instructs you to either
invite Peru or to exclude Qatar. The queen asks you to invite either Qatar or Romania or
both. The king, in a spiteful mood, wants to snub Peru or Romania or both. Is there a guest
list that will satisfy the whims of the entire royal family?

In this simple SAT problem, we can identify the three binary variables as whether or not Peru,
Qatar, and Romania are invited. The question can then be more concisely stated: we want to find an
assignment to P, Q, and R which satisfies the logic formula,

(P ∨ ¬Q) ∧ (Q ∨ R) ∧ (¬P ∨ ¬R),

where the symbols ∧, ∨, and ¬ correspond to the logical operations AND, OR, and NOT, respectively.
In this case, the problem is so small that it can be quickly solved by brute force methods: we can

just try all the possible assignments until one satisfies the logic. For instance, let us start by
attempting to invite all three countries. This satisfies the crown prince’s request that we invite Peru,
and the queen’s desire to invite both Romania and Qatar, but we find that we can’ t fulfil either of
the king’s wishes. If we instead consider inviting Peru and Qatar only, we find that this is a solution
to the problem; the logic is satisfiable. Note that a second solution exists, in which only Romania is
invited, and, for instance, if there were a further restriction that we couldn’ t invite both Peru and
Qatar, then this would become the unique solution.

This is a fairly contrived example, but it demonstrates one method for solving the problem: try
every possible assignment to the binary variables until the logic is satisfied. As the number of
binary variables increases, however, the number of possible assignments increases exponentially
and so even at fairly small numbers of variables, the problem quickly becomes intractable.

1 A Boolean, or binary, variable, X, is one which takes the value x ∈ { true, false} .

(1)

2

In order to compare methods for solving such problems, the concept of computational complexity
is important. The usual way of specifying this is to state how the time taken to solve a problem
scales with some measure of the ‘size’ of that problem. For instance, the number of steps to find a
solution to a SAT problem, using the brute force method above, scales as 2n and hence it is termed
‘exponential complexity’ .

Two classes of computational complexity are of interest, called ‘P’ and ‘NP’ , where ‘P’ ⊆ ‘NP’ ,
and for which it is believed ‘P’ ≠ ‘NP’ . Problems in which the complexity is polynomial (e.g. n, n2,
or even n500) are members of class ‘P’ , and are treated here as ‘easily’ solvable. The SAT problem,
however, along with many other ‘hard’ problems, is in the class ‘NP’ , and, more specifically, it has
been shown that it is NP-complete[4]. This is one of the most important types of computational
problems, since any one NP-complete problem can be converted to any other NP-complete problem
in polynomial time. Hence, a polynomial time solution to the SAT problem would provide a
polynomial time solution to a host of other problems, including the travelli ng salesman
problem[16], automated computer chip design[7], and the general decoding problem for error
correcting codes[18].

This investigation focuses on the application of Bayesian inference to the problem of f inding the
most probable assignment to the variables, given that the logic is satisfied. More specifically, the
technique examined is to consider the Boolean variables as vertices on a graph, and the logic clauses
as a network of edges and ‘checks’ connecting those vertices (see Fig. 1). The assignment that most
likely satisfies the logic statements can then be determined by sending ‘messages’ along the edges
about the probabiliti es of the variables being true or false given that the checks are true. An
analysis of this technique, and how well it performs in comparison with more conventional
algorithms, forms the basis of this study, but we will first describe the SAT problem in more detail
and review some standard approaches to its solution.

2. PROPOSITIONAL SATISFIABILITY

2.1 Terminology and Definitions

A logic function, or formula, is a general combination of Boolean variables (referred to as
propositions) and logical operators. The same function can often be rewritten in several different
forms, but here we will always use conjunctive normal form (CNF). A function in conjunctive
normal form is composed of one or more clauses, joined by the AND (∧) operator. Each clause
consists of one or more literals, joined by the OR (∨) operator, where each literal is either a single
proposition or its negation (X or ¬X). For example, the embassy ball problem, eq. (1), is in
conjunctive normal form, where the three clauses are the wishes of the three royals.

Fig. 1. Example of the type of graph used in this investigation, and its formation from a 3-SAT problem. Six
propositions, { V1, …, V6} , (circles) are shown, connected to four checks, { Z1, …, Z4} , (squares) by arcs which are either
‘normal’ (solid) or ‘negated’ (dotted). The value of a check is calculated from an assignment to { Vi} by performing the
logical OR of all the connected propositions, negating those connected by ‘negated’ arcs. In a satisfying assignment all
checks will be true.

Logic Formula, F

F = (¬V1 ∨ V2 ∨ V4)
 ∧ (¬V3 ∨ V5 ∨ ¬V6)
 ∧ (V1 ∨ ¬V3 ∨ V4)
 ∧ (V2 ∨ ¬V4 ∨ ¬V5)

V1 V2 V3 V4 V5 V6

Z1 Z2

Z3 Z4

Graph, G

3

Conjunctive normal form is useful in the context of satisfiabilit y since the clauses can be
interpreted as a set of separate logic statements which must be individually satisfied by the
assignment. This approach then simpli fies the calculation of whether the formula is satisfied by an
assignment, as each statement is true if any literal in that statement is true.

A standard subclass of the propositional satisfiabilit y problem is the k-SAT problem, in which
each logic clause contains exactly k literals. For k = 2 the problem has a polynomial-time solution,
but for k > 2 the problem is NP-complete, and hence, without loss of generality, we focus
exclusively on 3-SAT.

In this work, we define N to be the number of propositions and M to be the number of clauses. We
can then define, for a 3-SAT problem:

• V = { V1, …, VN} to be the set of N propositions.
• L = { V1, ¬V1, …, VN, ¬VN} to be the set of possible literals for V.
• C = { C1, …, CM} to be the set of clauses, where Ci = { l1, l2, l3 ∈ L} is a set of three literals.
• Z = { Z1, …, ZM} to be the set of ‘ checks’ , i.e. the values of { Ci} given an assignment to {Vi}.

The aim of the SAT problem is thus to find an assignment to the { Vi} such that the { Zi} are all true.
A central theme of this investigation is the use of inference to help solve such logic problems.

This is a technique by which it is possible to calculate the probabilit y of parameters, �, given data,
D, and it is performed using Bayes’ theorem:

)(

)()|(
)|(

DP

PDP
DP

θθθ = ,

where P(��| D) is known as the ‘posterior probability’ , P(D | �) is the ‘ likelihood’ , P(�) is the ‘prior
probability’ , and P(D) is a normalising constant.

In terms of the SAT problem, we are trying to infer the probabiliti es that the propositions, {Vi}, are
true, given that the logic is satisfied, i.e. P(Vi = true | Zj = true ∀j). Hence, we define the prior
probabiliti es, { gi}, as our prior knowledge of the probabiliti es that propositions { Vi} are true. Given
a random SAT formula, we know nothing beforehand, in general, about any satisfying assignments
to V, and so we set each gi to g = 0.5. This is known as using a non-informative prior.

2.2 Conventional SAT Solvers

Algorithms to solve the SAT problem can be described as either complete or incomplete.
Complete solvers are guaranteed to return a result as they explore the entire problem space2, though
as a result they all suffer from a worst-case exponential computational complexity. Incomplete
solvers, on the other hand, may not find a result as they employ, in general, heuristics and
randomness to guess likely assignments, and then explore the local problem space around those
assignments. On certain types of problem the incomplete algorithms are good in that they find
solutions very quickly. In large, hard problems, however, it is quite possible that these solvers
‘miss’ the area of the problem space containing the solution and yield no result.

Complete solvers do not, generally, attempt to attack a SAT problem by trying all possible
assignments. Instead, the most common approach, based upon the technique of ‘ backtracking’ , is
called the Davis-Putnam-Logemann-Loveland (DPLL) procedure[5][17]. It works by assigning a
value to each of the propositions in turn, and, with each assignment, ‘removing’ that proposition
from the logic. This is achieved by, for each of the clauses the proposition appears in, removing the
clause if it is satisfied by the assignment, or else removing the false literal from the clause. If, at any
point, an assignment results in an empty clause, i.e. all lit erals in it are false, then it ‘backtracks’ to

2 We use the term ‘problem space’ here to refer to the state space of all possible assignments.

(2)

4

the last decision it made and tries a different one. This will scan the entire problem space, and it is
more eff icient than simply testing each possible assignment, as it can prune whole branches off the
search tree without having to explore to the leaves.

In contrast, most incomplete solvers implement a stochastic local search (SLS), in which a
random initial assignment is adjusted iteratively so as to satisfy as many of the clauses as
possible[14]. Some implement sophisticated heuristics as to which propositions to adjust in each
iteration, but the overall effect is to explore the local state space around the initial assignment, and
they therefore do not explore the whole search tree.

A great deal of research has gone into methods for solving the SAT problem, and as a result many
complete and incomplete algorithms exist. In order to compare the performance of different
algorithms (and to encourage more work on new algorithms), the ‘DIMACS challenge’ [8][15] test
sets were introduced. These consist of a number of hard satisfiabilit y problems, which we will use
later in this investigation as a benchmark for the message-passing SAT algorithm.

2.3 SAT Problem Characteristics

In the past decade, much work has gone into attempting to characterise the behaviour of the SAT
problem as a function of the parameters N and M. The diff iculty has been that it appears to be very
sensitive to how the clauses are chosen, and, for a given method, sometimes the resulting problem is
very easy and sometimes it is very hard[1]. For anything but the smallest N and M, it is not possible
to try every possible combination, and so it is necessary to resort to statistical techniques.

The paradigm is to use ‘random 3-SAT’ f ormulas, in which the clauses are generated by choosing
three propositions at random from V, and either negating a proposition or not with probabilit y 0.5.
If hundreds of such formulae are then generated and tested, the average number with solutions is
found to be a characteristic function of N and M. It is observed that the behaviour depends on the
ratio r = M / N, and that at a particular value of r, r ≈ 4.3, the problem seems to undergo a phase
transition from always finding a solution to never finding one (see Fig. 2(a))[3][10]. For small r,
the problem is under-constrained and, as there are many solutions, they are easy to find. For large r,
the problem is over-constrained and it is easy to show that a solution doesn’ t exist. For r around the
phase transition, however, finding a result becomes very hard indeed, and a graph of the ‘cost’ of
finding a result shows a peak (Fig. 2(b)). The discovery of this phase-transitional behaviour has
resulted in parallels being drawn between the behaviour of a SAT problem and several physical
systems, including ‘spin glasses’ [2], and it is hoped that these comparisons will l ead to novel
approaches to both solving SAT and understanding the physical systems in the future.

Fig. 2. (a) Graph of percent satisfiable vs r for random 3-SAT. (b) Graph of median ‘cost’ of finding solutions vs r for
random 3-SAT. (Adapted from [13]).

(a) (b)

Ratio of clauses to variables

variables
50
40
30
20
10

5,000

1 2 3 4 5 6 7 8
0

1,000

2,000

3,000

4,000

variables
50
40
30
20
10

0

Ratio of clauses to variables
1 2 3 4 5 6 7 8

25

50

75

100

5

3. MESSAGE PASSING

We here outline a graph-based treatment of the SAT problem, in which the logic and propositions
are arranged into a ‘belief network’ (also known as a Bayesian network), and the probabiliti es are
iteratively updated by message-passing along the edges. The specific algorithm under study is the
‘sum-product algorithm’ , which was first used by Gallager in 1963 on the decoding problem for
error correcting codes[9]. The algorithm as applied to the SAT problem is sketched below, with
emphasis primarily on practical aspects (see Appendix for some further mathematical details).

3.1 Definitions

In this study, we consider the undirected bipartite3 graph G({ V, Z}, { Ea, Eb}) with vertices { V, Z}
and edges { Ea, Eb}, where V and Z are as defined earlier4, and Ea and Eb are two distinct sets of
edges, joining the V and Z vertices, and determined by the clauses, C. If proposition Vi appears un-
negated in clause Cj, then the arc (Vi, Zj) will be in Ea, else, if it appears negated in Cj, the arc will
be in Eb. Thus, we identify arcs in Ea as ‘normal’ and arcs in Eb as ‘negated’ .

We will need to be able to enumerate the arcs at each vertex, and, for each arc on a given vertex,
we need to be able to specify the index of that arc at the connected vertex. For example, consider
Fig. 3(a) in which vertex V1 has four arcs, and vertex Z1 has three. The ‘f irst’ arc at V1 connects to
Z1, but it is the ‘second’ arc at Z1 which connects to V1. In order to simpli fy the discussion below,
we introduce the following notation:

• let c(i, j) be the index of the check connected to node Vi by the jth arc from Vi,
• let d(i, j) be the index of the node connected to check Zi by the jth arc from Zi,
• let e(i, j) be the index of the arc from Zc(i, j) to Vi, and
• let f(i, j) be the index of the arc from Vd(i, j) to Zi.

Using this notation, the example above can be rewritten as: c(1, 1) = 1 and e(1, 1) = 2.
Finally, we define the belief network on which the sum-product algorithm is to be performed as a

set of conditional probabilit y vectors over G, where each vertex is associated with a vector, and each
element of that vector is related to an arc connected to that vertex. Mathematically, we can
represent this in the form B(G, {Q, R(x)}), where Q = { Qi} are conditional probabilit y vectors for the
nodes, {Vi}, and R(x) = { Ri

(x)}, for x ∈ { true, false}, are conditional probabilit y vectors for the
checks, {Zi} (see Fig. 3(b)). In this work, we define the exact meaning of Q and R as:

Qij = P(Vi = true | all i nformation from connected arcs other than j), and
Rij

(x) = P(Zi = true | Vd(i, j) = x, all i nformation from connected arcs other than j).

3 A bipartite graph is a network with two types of vertices, and with arcs that only connect vertices of different types.
4 We use, below, the term ‘node’ to refer exclusively to members of V, and the term ‘check’ to refer to members of Z.

(3)
(4)

Fig. 3. (a) Example of enumerating the arcs. (b) Example of a belief network (ovals represent the probabilit y vectors).

(a)

V1

Z11

2

3

1

2

34

(b)

V1 V2 V3 V4

Z1 Z2

Z3

Q1j Q2j Q3j Q4j

R(x)
1j R(x)

2j

R(x)
3j

6

3.2 The Sum-Product Algorithm

As the values of the Zi depend on the Vi, and vice versa, in order to calculate the posterior
probabilit y it is necessary to update the values of Q and R(x) iteratively. The sum-product algorithm
achieves this as follows.

At the start of the calculation, the Qij are initialised to the prior probability distribution, gi. There
are then two steps to perform each iteration; the first updates R(x) given Q, and the second calculates
Q given the new R(x). The calculations are somewhat complicated by the existence of ‘ negated’
arcs, which correspond to negating the connected proposition, but are otherwise similar in character
to those described in [18].

Step 1: This follows from the definition of R(x) in eq. (4): for each arc on a check, we want to
calculate the probabilit y that the check is true, given that the node on that arc has value x ∈ { true,
false}. For example, for x = true, then if the arc is ‘normal’ , this probabilit y is 1, otherwise it is 1 –
P(not satisfied by the other arcs). The probabilit y, Pik, that check Zi is not satisfied by the kth
attached node, Vd(i, k), depends on the (conditional) probabilit y of that node being true, Qd(i, k)f(i, k),
and whether or not the arc is ‘negated’ :





−
=

 arc normal''1

 arc negated''

),(),(

),(),(

kQ

kQ
P

kifkid

kifkid
ik

After evaluating the probabiliti es Pik, Rij
(x) can be calculated as described above, i.e.:





 −

=




 −

=
∏∏

≠≠

j

jP
R

j

jP
R jk

ik
false

ijjk

ik
true

ij

 arc negated''1

 arc normal''1

 arc normal''1

 arc negated''1
)()(

Step 2: The updating of the Qij is the step incorporating Bayes’ theorem; the probabilit y of Vi being
true given that the checks are all true is proportional to the probabiliti es of the checks being true
given Vi true, which are the probabiliti es . We thus calculate the product of those
probabiliti es (excluding arc j), multiply by the prior probabilit y of being true, gi, and normalise:

() ∏∏
∏

≠≠

≠

+−
=

jk

true
kiekici

jk

false
kiekici

jk

true
kiekici

ij
RgRg

Rg

Q
)(

),(),(
)(

),(),(

)(
),(),(

1

The final, and most important, part of the algorithm is the method for calculating the posterior
probabilit y of each proposition being true given that each clause must also be true. When applied to
a graph with no cycles (a polytree), and once converged, the following calculation yields the exact
posterior probabiliti es:

() ∏∏
∏

+−
=∀===

k

true
kiekici

k

false
kiekici

k

true
kiekici

jii
RgRg

Rg

jtrueZtrueVPp
)(

),(),(
)(

),(),(

)(
),(),(

1
)|(

Note that this time the product is taken over all k; this can be done with littl e extra effort when
calculating the Qij as in eq. (7).

(5)

(6)

(7)

(8)

)(
),(),(

true
kiekicR

7

When applied before convergence of the algorithm, or on graphs with cycles, eq. (8) yields the
‘pseudoposterior probabilit y’ , which can be used to detect convergence. Although not the exact
posterior probabilit y for graphs with cycles, it has been found by MacKay in [18] to work well for
determining an assignment (in which the exact probabiliti es do not feature).

4. IMPLEMENTATION AND RESULTS

Initially, the aim was to code the sum-product algorithm for eff iciency, and thus streamlined C
code was written which performed the basic algorithm. During preliminary testing of this program,
however, it became apparent that there were many parameters and configurations to explore and so
the important factor became the adaptabilit y of the program. To this end, it was rewritten in C++,
using classes to separate distinct areas of the program and make changes easier and faster to
implement.

4.1 Algorithm Testing

In order to compare the performance of various adaptations to the sum-product algorithm, the
following prescription for generating and testing SAT formulae was used:

• It was decided that the programs should be tested on random CNF formulae which had at least
one solution. In order to generate these, a solution, vsecret, was first randomly generated in
which each proposition was true or false with even probabilit y. Next, clauses were generated
by selecting three propositions at random and negating them with probabilit y 0.5 each.
Finally, the clauses were then checked to see if they were satisfied by vsecret, and if not they
were discarded. Once the clauses had been created, vsecret was discarded too.

• The iterative step was performed up to 100 or M times, whichever was larger.

• Assignments were generated from the pseudoposterior probabiliti es, pi, after each iteration by:





<
≥

=
5.0

5.0

i

i
i

pfalse

ptrue
V

• The assignment was tested to see if it satisfied the formula. If it did, then the calculation was
stopped, and success was reported.

• A comparison between the { pi} this iteration and those of the previous iteration was made. If
no change (to two decimal places) was detected for 4 iterations, the calculation was stopped
and failure reported, as it was assumed that the algorithm had reached a stable state which was
not a solution to the problem.

• If the iterations were completed and yet no solution found, failure was reported.

• To explore the parameter space, results were gathered for a wide range of M (spread
exponentially between 2 and 1000000), and for N = 10, 20, 50, 100, and 1000. For each N and
M, 100 results were obtained, so as to give an outline of the statistical properties.

4.2 Presentation of Results

As the algorithm design and testing processes for this investigation were closely linked, the
method and results are presented together for each variation of the basic algorithm. Six variants are
described, and to help minimise confusion, they will each be given an identifier of the form:
SAT<name>, where <name> is a label related to the method used.

(9)

8

4.3 Basic Sum-Product Algorithm

Initial tests of the basic algorithm disclosed several diff iculties linked to floating point errors5,
including a criti cal problem occurring when the number of connections to each node was too large:
the products of Rij

(true) and Rij
(false) could both become zero, hence making eq. (7) undefined. This

problem was overcome in two ways: first, attempts were made to stop the Qij becoming too close to
0 or 1 by limiti ng them to between 10-8 and 1 – 10-8, and second, instead of using probabiliti es, the
algorithm was adapted to use the logarithm of the probabiliti es. This allowed the products of Rij

(true)

and Rij
(false) to both be very small , but still retain accuracy when normalised. Thus, this method

gives the best possible accuracy for the probabiliti es, and will be referred to as ����������	�
�� , whilst
the version not using logarithms will be called ������
�������� . The results for ����������	�
�� are shown in
Fig. 4(a), and a comparison of the two methods shown in Fig. 4(b). It was observed that although
using logarithms yielded a slower algorithm, it allowed a greater range of M / N to be explored and
was ‘ truer’ to the original sum-product algorithm. It was therefore decided to use ����������	�
�� as the
base for further investigations.

5 A floating-point error is a by-product of the limited precision with which real numbers are stored on a computer.

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10 100 1000 10000
M / N

P
er

ce
nt

ag
e

of
 ti

m
es

 a
 s

ol
ut

io
n

w
as

 fo
un

d

 N = 10
 N = 20
 N = 50
 N = 100
 N = 1000

����������� �"!

(a)

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10 100 1000 10000
M / N

P
er

ce
nt

ag
e

of
 ti

m
es

 a
 s

ol
ut

io
n

w
as

 fo
un

d

 N = 10
 N = 20
 N = 50
 N = 100
 N = 1000

 N = 10
 N = 20
 N = 50
 N = 100
 N = 1000

�����$#&%�'"%�(

����������� �"!

 (b)

Fig. 4. (a) Graph of percentage of times a solution was found against M / N for)$*,+.-0/�132&4 . (b) Graph of percentage of
times a solution was found against M / N for)$*,+6537�8&7�9 , with the points for)$*,+.-0/�132&4 plotted as a comparison. (NB.
The lines are just to guide the eyes and help distinguish trends.)

9

4.4 Improving the Algorithm

The characterisation of ����������	�
�� , Fig. 4(a), revealed a failure to find the solution around the
‘hard’ regions of the problem space (M / N ≈ 4), and a number of approaches were considered in
order to improve its performance in this area. Investigating in detail the behaviour of ����������	�
�� on
‘hard’ problems, it was noticed that the sum-product algorithm exhibits two main types of
behaviour:

• Unstable: the pseudoposterior probabiliti es change greatly from one iteration to the next. In
some cases, they end up taking only values very close to 0 or 1, at which point the pattern
might sometimes repeat a cycle of moves or otherwise evolve in a seemingly chaotic fashion.

• Weak decisions: the pseudoposterior probabiliti es are close to 0.5, and the system is
effectively ‘unsure’ as to what assignment to make.

To attempt to deal with these behaviours, two different algorithms were developed. The first
addresses the problem of weak decisions by choosing a few propositions which have
pseudoposterior probabiliti es furthest from 0.5, and ‘f ixing’ them to the closer of 0 or 1 by setting
their prior probabiliti es. The iterations are then allowed to continue, and the hope is that by making
a decision, we have resolved whatever conflicts were causing the sum-product algorithm to be
uncertain. Care has to be taken in making the choice of which ones to fix, however, since the
system may be in the ‘unstable’ regime, and probabiliti es furthest from 0.5 may be in a state of f lux.
Therefore, this ‘f ixing’ algorithm, which we shall refer to as ������
 , ranks the propositions by the
following (arbitrary) measure:

() () iii pfs −+−+− 5.02005.05 ,

where si ∈ {0, …, 5}is a measure of the stabilit y of the proposition, 0 being stable, and 5 being
unstable, and fi is the number of f lips of assignment (out of 100) this proposition has undergone.
The 3% of propositions with the lowest value of this measure are then ‘f ixed’ . ������
 then continues
this running and fixing until two thirds of the propositions have been fixed before returning failure.

The second attempt to improve the behaviour of the sum-product algorithm involved changing the
prior probabilit y for all propositions, g, from 0.5, to see if the weak decisions and instabilit y were
reduced. This adaptation, referred to as ������� , attempts to solve each SAT formula with a range of
g between 0.2 and 0.8. A comparison of the performance of ������� , ������
 , and ����������	�
�� is shown
in Fig. 5, below. It is clear from these results that both ������
 and ������� performed better than
����������	�
�� in most cases, and that of those two, ������� was generally the superior. In order to shed
some light on why this might be, we next investigated the prior probabiliti es in more detail .

4.5 Prior Probabilities

The choice of prior probabiliti es, gi, was discussed in section 2.1, and it was decided that for
random CNF clauses it was best, mathematically, to choose the non-informative prior; gi = g = 0.5.
Now consider what we know if we are creating the clauses according to the prescription in section
4.1. If a particular proposition, X, in vsecret were true, then if a clause is created with the literal X in,
it would always be accepted. A clause with ¬X in, however, would only be accepted if one or both
of the other two literals is true, which occurs with probabilit y 0.75. Hence, for M / N large (many
clauses concerning each proposition), one might expect more clauses to contain X than ¬X. The
converse is, of course, true if X is false in vsecret.

To investigate this problem, ����������	�
�� was adapted to use this information to ‘cheat’ by counting
the numbers of Vi and ¬Vi in the logic, and setting its prior probabiliti es as follows:

(10)

10

() ()
() ()







−¬<
+¬>

=
otherwise

VV

VV

g ii

ii

i 1)(of#of#

1)(of#of#

5.0

2.0

8.0

The results of this variant, �����������
	�� , are shown in Fig. 6(a) below, and are somewhat surprising;
there seems to be very little difference between the results of �����������
	�� and �����

�	����
� .
Investigating further, �����

�	����
� was used to analyse the effect of varying g for two different N and
M (see Fig. 6(b)). The resulting distribution of finding a solution against g is clearly uniform over
most of the range, which is perhaps strange, as physically a low or high g corresponds to expecting a
lower or higher number of true-valued propositions in the satisfying assignment, but the algorithm
seems to not be sensitive to changes in this variable. This goes some way towards explaining the
success of ������� . By varying g, we effectively run the sum-product algorithm a number of times
(with a slightly different start condition each time) and thus it performs better than �����

�	����
� ,
which only runs the algorithm once. It would appear that the more times it is run, with varying start
conditions, the more likely it is to find a solution. This is demonstrated in Fig. 6(c), which shows

(11)

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10 100 1000 10000
M / N

P
er

ce
nt

ag
e

of
 ti

m
es

 a
 s

ol
ut

io
n

w
as

 fo
un

d

 N = 10
 N = 50
 N = 1000

 N = 10
 N = 50
 N = 1000

 N = 10
 N = 50
 N = 1000

�������������!

�����#"

�����%$

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10 100 1000 10000
M / N

P
er

ce
nt

ag
e

of
 ti

m
es

 a
 s

ol
ut

io
n

w
as

 fo
un

d

 N = 20
 N = 100

 N = 20
 N = 100

 N = 20
 N = 100

�������������!

�����#"

�����%$

Fig. 5. Graphs of percentage of times a solution was found against M / N for &%')(#*,+�-/.10 , &%')()2 , and &%')(#3 . For clarity,
the results have been plotted on two separate graphs, and it should be clear that &%')(#3 generally outperforms the other
two algorithms. (NB. The lines are just to guide the eyes and help distinguish trends.)

11

the results for ������� of varying the number of steps in g used to go between 0.2 and 0.8. We
observe that as the number of steps increases, the percentage of times a solution was found
increases.

4.6 Benchmarks and Comparisons

We can see from Fig. 5 that, of the algorithms discussed so far, ������� performs best in most cases.
It was therefore chosen as the algorithm to test against standard SAT benchmarks. In order to put
the results in perspective, the test sets were also attempted by the state-of-the-art incomplete solver,
�	��

������� [21]. The benchmarks used were the following selection of test sets, available from
internet satisfiability sites:

• DIMACS: two sets of DIMACS[8] problems were tested: AIM, artificially generated random
3-SAT instances (only the satisfiable set), and LRAN, large random 3-SAT instances.

• uf250: 100 uniform CNF 3-SAT instances with N = 250, M = 1065, from SATLIB[20].
• n50cnf: 50 uniform CNF 3-SAT instances with N = 50, M = 215, from [11].

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10 100 1000 10000
M / N

P
er

ce
nt

ag
e

of
 ti

m
es

 a
 s

ol
ut

io
n

w
as

 fo
un

d

 N = 10
 N = 20
 N = 50
 N = 100
 N = 1000

 N = 10
 N = 20
 N = 50
 N = 100
 N = 1000

���������������

����� ��! "��$#

(a)

0

10

20

30

40

50

60

70

80

90

100

1 10 100
M / N

P
er

ce
nt

ag
e

of
 ti

m
es

 a
 s

ol
ut

io
n

w
as

 fo
un

d

 2
 4
 8
 16
 32

(c)

of steps

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1
g

P
er

ce
nt

ag
e

of
 ti

m
es

 a
 s

ol
ut

io
n

w
as

 fo
un

d (b) N = 10, M = 40 N = 20, M = 80
data
average

data
average

Fig. 6. (a) Graph of percentage of times a solution was found against M / N for %'&)(+*�,+-/.10 . (b) Graph of percentage of
times a solution was found against g for %'&)(/2+.�314 * for two values of N and M (10 sets of data each). (c) Graph of
percentage of times a solution was found against M / N for %'&)(/5 , for N = 10, and varying the number of steps in g used.
(NB. The lines are just to guide the eyes and help distinguish trends.)

12

The results are slightly disappointing; ������� solved none of the AIM, LRAN, or uf250 sets, and
only 10% of the n50cnf set. In contrast, �	��

������� solved 54% of AIM, 2 out of 3 in LRAN, and
99% and 98% of uf250 and n50cnf respectively. Note, however, that all these sets are in the ‘hard’
region, M / N ≈ 4.3, and that they were created by generating random 3-SAT and selecting the
instances found hardest by some complete solvers.

Despite the poor performance of ������� on the hardest problems, we have shown above that the
message-passing approach works very effectively on the high and low regions of M / N, and it is
thought that it should be possible to create enhanced adaptations of the algorithm with improved
performance in the hard region.

4.7 Backtracking

To determine if this was indeed the case, the final part of this investigation involved creating
hybrid schemes, i.e. using the sum-product solver as a heuristic in some standard complete
algorithms. This is a large field, however, and it was only possible to focus on one technique in the
time available: the DPLL algorithm described in section 2.2. The sum-product algorithm was used
at each step to determine which of the propositions was the ‘best’ to fix, and which value to fix it to.
In order to compare the resulting program, ������� , on a level footing with the previous methods,
however, it was necessary to first ‘remove’ the completeness of the algorithm (and so reduce it to
polynomial time) by limiti ng the number of backtracks to 50. This allowed the algorithm to make
only 50 incorrect decisions before returning failure, and hence the resulting performance is a good
indication of the effectiveness of the sum-product algorithm as a heuristic. The results are
summarised in Fig. 7 below, and it is clear that ������� outperforms the other sum-product-based
algorithms tested above. We suggest that the performance of ������� might be improved by using the
sum-product algorithm to assign values to more than one proposition at a time. A further
enhancement would be to make use of the information gained each time an inconsistency arises,
perhaps by introducing some extra checks into the belief network indicating that a successful
assignment is li kely to be different to the failed assignment.

Fig. 7. Graph of percentage of times a solution was found against M / N for ������� , to the same scale as Figs. 4 & 5. For
N = 1000 and M / N > 4, it was necessary to reduce the number of runs per data point from 100 to only a few to speed up
data collection, and hence those data points have a greater scatter. The range of M / N for which this algorithm is useful,
however, is clearly much larger than previous algorithms. (NB. The lines are just to guide the eyes and help distinguish
trends.)

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10 100 1000 10000
M / N

P
er

ce
nt

ag
e

of
 ti

m
es

 a
 s

ol
ut

io
n

w
as

 fo
un

d

 N = 10
 N = 20
 N = 50
 N = 100
 N = 1000

�������

13

5. DISCUSSION

Graph-based techniques for solving logic problems, though well established and of significant use,
are often overlooked by researchers. The original Davis-Putnam algorithm[6] for solving SAT
problems was in fact graph-based, but was then developed into a purely logic-based backtracking
algorithm (DPLL). Recent work on developing the original graph-based methods has met with
some success, and afforded some insight into the behaviour of SAT problems, though the research
is still at an early stage[19].

We saw above that the graph-based algorithm in this investigation, though good for under- or
over-constrained instances, performs poorly in regions of the parameter space where it is
conventionally hard to find solutions; Fig. 4(a) shows ����������	�
�� faili ng to find a solution for a
range of M / N, centred on M / N ≈ 5, which grows as N is increased. Some of the adaptations to the
basic algorithm, specifically ������
 and ������� , perform much better in these regions, but it would
appear that these methods still fail to solve the hardest SAT problems. Despite these problems, we
believe that such Bayesian techniques can be very valuable in that, if the pseudoposterior
probabiliti es converge to a stable solution, they convey information about how every proposition is
affected by every other proposition. Such a holistic approach to the problem has been lacking from
the field for many years, and could provide a powerful tool for analysing SAT problems effectively.

More research is undoubtedly needed into methods to help the algorithm converge on a stable
solution though, and some possibiliti es include:

• Post-processing: A brief study of ‘ post-processing’ the output of the sum-product algorithm
was undertaken for this discussion, in which the pseudoposterior probabiliti es were used as a
heuristic in a conventional backtracking search. It was found to work well for small N, but
was sometimes very slow for larger N, indicating that the heuristic was not particularly
effective. As a further investigation, it would be interesting to consider the application of
stochastic local search methods to the assignment generated by ����������	�
�� . This would show
whether the algorithm is getting ‘close’ in problem space to a satisfying assignment.

• Problem structure: A fundamental diff iculty with the algorithm is that it was designed for
polytrees, whereas a uniform SAT problem at the phase transition produces a dense graph with
many cycles. This density of connections is li kely to be the main cause of failure of the
technique, and it may be worth considering if any other message-passing algorithms are more
suited to the types of graphs generated by such problems. Another alternative would be to
investigate the different structures of networks generated from non-uniform SAT problems. In
particular, some real-world SAT problems have graphs with fewer cycles and the sum-product
algorithm may work particularly well on problems of these forms.

• Update schedule: It is possible that the algorithm suffers from problems due to all the
messages being passed synchronously. A brief investigation of asynchronous message-passing
was carried out and no significant difference was observed, but the results were inconclusive.

• Backtracking with inference: As mentioned in section 4.7, it seems likely that the
performance of ������� or similar would be greatly improved by inferring information when
inconsistencies or failures arise.

Even if it is found to be ineffective in finding satisfying assignments, the message-passing
technique studied here is potentially still useful in that it gives a new perspective on the problem,
and it should be possible to analyse why the algorithm fails and thus gain insight into what makes a
‘hard’ problem hard.

The above investigation was very time-limited, and it was not possible to perform more than a
small fraction of the possible experiments on the algorithm. We have discussed some possible

14

directions for future research, but it is worth also considering some extensions to the work carried
out. In particular:

• Unbiased CNF: It would be useful to gather a set of results using an unbiased logic-
generation algorithm in which a satisfied clause is discarded a quarter of the time, though it is
expected that this would not have a very great effect on the forms of the graphs.

• Number of iterations: A series of experiments determining the numbers of iterations required
for convergence would be worthwhile. The choice of 100 iterations was almost arbitrary in
this study, and it may be that this was too many or too few and that by changing the number of
iterations it could be possible to improve the algorithm’s performance.

• Tweaking parameters: ������� and ������� have tuneable parameters in the measure used to
rank the nodes, eq. (10). Experiments to adjust this equation could result in improved
performance for both of these algorithms.

6. CONCLUSIONS

In this investigation, we have successfully explored the behaviour of not only the basic sum-
product algorithm but also several adaptations, and demonstrated that they solve the SAT problem
well for a wide range of M / N. We have shown that such algorithms on their own are not suff icient
to tackle hard SAT instances (M / N ≈ 4), but, in the process, this study has revealed several possible
areas for future research which may lead to either significant improvements in performance or an
insight into the nature of hard SAT problems.

REFERENCES

 [1] D. Achlioptas, C. Gomes, H. Kautz, and B. Selman, “Generating satisfiable problem
instances,” Proc. AAAI-2000, 2000.

 [2] G. Birola, R. Monasson, and M. Weight, “A variational description of the ground state
structure in random satisfiabilit y problems,” Eur. Phys. J. B., vol. 14, pp. 551-568, 2000.

 [3] P. Cheeseman, B. Kanefsky, and W.M. Taylor, “Where the really hard problems are,” Proc.
IJCAI-91, vol. 1, pp. 331-337, 1991.

 [4] S.A. Cook, “The complexity of theorem-proving procedures” , Conference Record of the Third
Annual ACM Symposium on the Theory of Computing, pp. 151-158, 1971.

 [5] M. Davis, G. Logemann, and D. Loveland, “A machine program for theorem proving,” Comm.
ACM, vol. 5, no. 7, pp. 394-397, 1962.

 [6] M. Davis and H. Putnam, “A computing procedure for quantification theory,” J. ACM, vol. 7,
pp. 201-215, 1960.

 [7] S. Devadas, “Optimal layout via Boolean satisfiabilit y,” Proc. Int. Conf. on Computer-Aided
Design (ICCAD), pp. 294-297, Nov. 1989.

 [8] DIMACS challenge: http://dimacs.rutgers.edu/pub/challenge/satisfiabilit y/benchmarks/cnf/
 [9] R.G. Gallager, “Low density parity check codes,” no. 21 in Research Monograph Series.

Cambridge, MA: MIT Press, 1963.
 [10] I.P. Gent and T. Walsh, “The SAT phase transition,” Research paper 679, Department of AI,

University of Edinburgh, 1994.
 [11] J. Gottlieb: http://www.in.tu-clausthal.de/~gottlieb/benchmarks/3sat/
 [12] J. Gu, P.W. Purdom, J. Franco, and B.W. Wah, “Algorithms for the satisfiabilit y (SAT)

problem: a survey.” Preliminary version, 1996.

15

 [13] B. Hayes, “Can’ t get no satisfaction” , Am. Sci., vol. 85, no. 2, pp. 108-112, Mar. 1997.
 [14] H.H. Hoos and T. Stützle, “Towards a characterisation of the behaviour of stochastic local

search algorithms for SAT,” AI, vol. 112, pp. 213-232, 1999.
 [15] D. Johnson, and M. Trick, eds. “DIMACS series in discrete maths and theoretical computer

science,” AMS, vol. 26, 1996. See also, [8].
 [16] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, eds. “The travelli ng

salesman problem.” John Wiley & Sons, New York, 1985.
 [17] P. Liberatore, “On the complexity of choosing the branching literal in DPLL,” AI, vol. 116, pp.

315-326, 2000.
 [18] D.J.C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans.

Inform. Theory, vol. 45, no. 2, pp. 399-431, Mar. 1999.
 [19] I. Rish, “Eff icient reasoning in graphical models,” Ph.D. thesis, University of Cali fornia,

Irvine, 1999.
 [20] SATLIB: http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/
 [21] B. Selman, H. Kautz, and B. Cohen, “Local search strategies for satisfiabilit y testing,” Cliques,

Coloring, and Satisfiability: Second DIMACS Implementation challenge, Oct. 1993, published
as [15].

16

APPENDIX

Here we formalise some aspects of the discussion in section 3 of the main text. As described in
§3.1, we consider the undirected bipartite graph G({ V, Z}, { Ea, Eb}) with vertices { V, Z} and edges
{ Ea, Eb}, where V = {V1, …, VN} is a set of N Boolean variables, Z = { Z1, …, ZM} is a set of M
Boolean variables, and Ea, Eb ⊆ V × Z are two distinct sets of edges joining the V and Z vertices.
The set V represents the N propositions, and the set Z represents the Boolean value of the M clauses.
The sets of edges are related to the logic formula for the specific SAT instance, in that:

Ea = { (Vi, Zj) | Vi ∈ Cj},
and Eb = { (Vi, Zj) | (¬Vi) ∈ Cj}.

If an arc (Vi, Zj) ∈ (Ea ∪ Eb), we say that Vi and Zj are connected. We can now define:

a(i) = { j | (Vj, Zi) ∈ Ea}
and b(i) = { j | (Vj, Zi) ∈ Eb}

as the sets of indices of all Vj connected to vertex Zi by arcs in Ea and Eb respectively. These can be
used to express mathematically how the values of Zi are calculated from an assignment to V:

Zi = ∨ (Vk) ∨ ∨ (¬Vk),

where the ‘big-∨’ notation takes the logical OR over its arguments. Furthermore, we can now
precisely define the conditions for ‘negated’ and ‘normal’ arcs in eqs. (5) and (6) as:

‘negated’ arc k ⇔ d(i, k) ∈ b(i)
‘normal’ arc k ⇔ d(i, k) ∈ a(i)

Finally, it is worth briefly mentioning an eff icient way of performing the products in eq. (7); the
forward-backward algorithm. Let F(x) and B(x) be four vectors of length L, where x ∈ { true, false}
and L is the number of arcs on node Vi. The elements of the vectors are given by:

∏
=

=
j

k

x
kiekic

x
j RF

1

)(
),(),(

)(

∏
−−=

=
L

jLk

x
kiekic

x
j RB

)1(

)(
),(),(

)(

We need only to calculate these elements once, and then we can eff iciently calculate:








=
=

=

−−

−

−

≠
∏

otherwise

Lj

j

BF

F

B

R
x

jL
x

j

x
L

x
L

jk

x
kiekic

1

)()(
1

)(
1

)(
1

)(
),(),(

k ∈ a(i) k ∈ b(i)
(16)

(12)
(13)

(14)
(15)

(17)
(18)

(19)

(20)

(21)

