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Abstract

In this paper the use of the sum-product algorithm in solving the
maximum independent set problem is studied. The algorithms speed,
and quality of solution is measured, as well as the conditions under
which the algorithm fails. It is found that while the algorithm is very
fast, it can only be applied to a very limited sub-set of possible graphs,
namely those with an edge density of approximately p < ﬁ, where n
is the number of vertices in the graph. It is also found that, for graphs
less dense than this the algorithm performs well, and typically finds an
independent set at least 80% of the size of the maximum independent
set.

A number of adaptations of the algorithm were introduced. The
first was a set of random perturbations to the weights to try and break
the symmetry of the problems. This was found to have a small positive
effect on the results. The second adaptation was introducing an adap-
tive algorithm for the free parameter 3. This was found to significantly
improve the quality and range of the results over a fixed § algorithm.

Finally a simple genetic algorithm was introduced for comparative
purposes. The sum-product algorithm was found to be less useful for
most graphs, but better for low density ones.
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Figure 1: A simple graph

1 Introduction

The maximum independent set problem is one of a group of important math-
ematical problems, known as NP complete. This means that the once a
solution has been found, it can be checked in polynomial time. The current
thinking in the mathematical community is that the solution can actually
only be found in exponential time, and because of the problems that this
entails, finding good approximation techniques has become very important.
By ‘good’ we mean that the approximation method will give a valid solution
that is correct to within some factor (preferably high) of the true answer.
For example: The travelling salesman problem is a very famous example of
an NP complete problem. The task is to find the shortest route that visits
each city once and only once. A good approximation algorithm would find
a route which is ‘close’ to the correct solution, and therefore very useful in
real world situations, but in significantly less time.

1.1 Definitions

A graph G is an object made of vertices and edges, so that G = (V, E). A
vertex is also known as a node. An edge is simply an object that connects two
vertices together. For this paper it is assumed the the edges are undirected
i.e. they can be traversed in either direction.

For each vertex i € V there is a weight associated w; which must be
positive. The adjacency matriz of G is defined by a;; = 1 if (¢,j) € E i.e.
a;; = 1 when vertices ¢ and j are connected by an edge. The complement
graph of G is defined to be G = G(V, E) so that if an edge is in E, it isn’t
in E, and if it isn’t in E, it is in E.

The degree of a vertex i, is defined as the size of the subset of the graph
which is adjacent to vertex 4. This can therefore be written as:

D; = Zaz’j (1)
j

A clique C of the graph is a subset of the G such that all its members



are adjacent to each other. The maximum clique is the clique with the most
members. A mazimal clique is a clique to which no members can be added
without it ceasing to be a clique i.e. it is not a subset of any larger clique.
In figure 1 for example, the subsets (2,4), (1,5), (1,2) and (1,2,3) are not a
clique, a clique, a maximal clique, and the maximum clique respectively.

An independent set of the graph is a subset of the graph such that no
members are adjacent to each other. The maximum independent set is the
independent set with the most members. In figure 1 the subsets (1,5), (2,4)
and (2,3,4) are not an independent set, an independent set and the maximum
independent set respectively.

It is obvious that if C' is the maximum clique of G then it is the maxi-
mum independent set of G, and so any algorithm that finds the maximum
clique can also find the maximum independent set, and the problems are
interchangeable.

The weighted version of the maximum independent set problem takes
into account the weights of each vertex. Here the task is to maximise the
sum of the weights of the vertices in the independent set. For instance, in
figure 1 if the weights of the vertices were 10, 1, 1, 1, 1 for each in turn then
the best solution would be vertices 1 and 4, as they form an independent
set which maximise the weights. The unweighted case can be considered as
a special case where all the weights are equal to 1.

1.2 Motivation

So what are the reasons for wanting to solve the maximum independent
set problem?. Firstly, the problem has a number of similarities with other
problems, such as the class known as SAT. These problems are to do with
constraint satisfaction and have many real world applications. This means
that if a approximation method works well on the maximum independent
set problem, then it can probably be adapted to help solve many other NP
complete problems as well.

Secondly, the problem does have a number of real world applications of
its own (see [1] pages 41-47). For instance, in coding theory the task is to
find a set of codewords that are as ‘different’ from each other as possible, so
that after they have been passed through the channel they are likely to still
be distinguishable. One way to do this would be to represent each possible
codeword as a vertex in the graph, and then link all codewords which are
likely to be confusable after being passed through the channel by an edge.
Finding the maximum independent set of this graph is then the same as
finding the best non-confusable set of codewords.

There are many other uses in areas such as computer vision and fault
diagnosis, and some more esoterical mathematical areas.



1.3 Existing methods

There are really two different methods of attempting to solve the problem;
exact methods and heuristics. The methods described here are for the un-
weighted case but can be modified to work in the weighted case.

For the exact algorithms there are a number of different methods which
have been tried.

Enumerative algorithms work by testing each possibility explicitly. These
can be made more useful by using a backtracking method which removes
some of the redundancy involved in generating the same clique. Other meth-
ods involve decomposing the graph into a number of subgraphs (chosen so
that every clique is contained completely by at least one subgraph), and then
finding the cliques (which is equivalent to finding the independent sets of
the complement graph). The best performance of an enumerative algorithm
was that produced by Tomita which had a time complexity of O(3™/3) [1].

Another type of exact algorithms used for the unweighted case are known
as the branch and bound methods. These work by breaking the problem
down into a set of smaller subproblems and then branching between them.
A recursive algorithm for the maximum independent set has been produced
by this method which has a time complexity of O(2"/3) [1], which is much
faster than enumerative methods. The standard benchmark for both exact
and heuristic algorithms is DFMAX, an exact solver based on the branch
and bound method.

For further details on exact algorithms see [1].

When it comes to heuristic algorithms, there are a huge variety of dif-
ferent approaches:

e Standard genetic algorithms have been applied to the problem with
varying degrees of success. A typical fitness function is, used in [2] is:

flz) = ZLL‘, —n- z Qi TiT (2)

1,J>1

where I is a binary string with x; = 1 if vertex ¢ is in the set. This
penalises sets which are not independent sets.

e Sequential greedy heuristics are very simple algorithms. They work
by repeatedly adding the best candidate and removing the worst from
the set until a maximal set is formed. These can be very fast, but are
unlikely to find the true maximum independent set.

e Simulated annealing: This is a method based on a physical interpre-
tation of the system. An ‘energy’ function f is designed so that it is
minimised by the desired solution. Random states are then generated
from the current one. If the energy decreases then the new state is
accepted. If the energy function increases then it is accepted with



probability exp(Af/7), where 7 is the ‘temperature’ of the system.
Then as the simulation is run, the temperature is gradually lowered
until a stable state is reached.

This method seems to be very effective and was one of the best heuris-
tics at the 1993 DIMACS' challenge, a competition to find the best
heuristics for the problem.

e Neural networks and Hopfield networks [6].

e Replicator equations, as used in game theory.

For descriptions of more heuristic algorithms see [4], [5] and [1].

2 The Sum-Product algorithm

The first documented use of the sum-product algorithm was by Gallager [10]
in 1963. He used it as the decoder for a set of low density parity check codes
now known as Gallager codes. Now the algorithm is used in a wide variety
of problems such as Bayesian networks, logic circuits, signal processing,
Markov chain processes and computer vision. In fact the algorithm can be
applied to almost any problem that can be expressed in terms of a factor
graph [8]. A factor graph is a representation of how a global function of
many variables can be decomposed into a product of many local functions
of fewer variables e.g.

g(a:, Y, z,a, b,c,n,m, l) = fA(wa Y, Z)fB(G,, b, C)fC(’fl,m, l) (3)

It takes the form of a bipartite? graph, made up of variable nodes (or
vertices) and function nodes. Figure 2 shows a simple example of a factor
graph.

The actual sum-product algorithm on the graph is then simply: The
message sent from a node v on edge e is the product of the local function at
v with all messages received at v on edges other than e. If v is a variable
node then the local function is simply unity [7].

So how does this apply to the maximum independent set problem? The
graphs on which we want to find the maximum independent set are not
in general bipartite. If they were then finding the set would be trivial, as
it would simply be the largest of the two separate subsets of the graph.
Instead, it is possible to convert any graph into a bipartite one by simply
counting all existing nodes as variable nodes and placing a function (or
check) node on every edge. Thus every variable node will have a check node

!Center for Discrete Mathematics & Theoretical Computer Science.
%A bipartite graph is one made of two distinguishable sets, where every element of each
set only connects to elements of the other set.



Variable nodes

Function nodes

Figure 2: A example factor graph showing function nodes and variable
nodes.

between it and the next variable node. We can then use the message passing
algorithm to calculate the marginal posterior probability of each variable
node being in the maximum independent set of the original graph. This
is not necessarily going to converge to a definite result as the sum-product
algorithm is only guaranteed to work if there are no cycles in the graph, and
there will definitely be many cycles in a typical random graph. However
although the algorithm will not stop on its own it may still converge enough
to produce good results, as shown in the decoding of the Gallager codes [9].

The algorithm works with each variable node passing a message to its
checks, stating how likely it “thinks” is that it is in the maximum indepen-
dent set. Each check node then translates the message and passes it on to
the next variable node. The translation takes the form of changing a mes-
sage from “It is this likely that I am in the set.” to “Given how likely it is
that I am in the set, this is how likely it is that you are in the set.”

The algorithm uses the following terms:

. Qg-v) is the message that variable node 7 sends to check node j. It is the
probability that ¢ is in state z (given the information it has received
from all j' # j), with z = 1 meaning the probability that the node is
in the set.

. Rg.f,) is the message that check node j sends to variable node #'. Tt is
the probability that, given the information j has received, 4’ is in state
T.

° PZ@ is the posterior probability that ¢ is in state x given the informa-

tion it has received.

o gz@ is the prior probability that node i is in state z.

The algorithm then works in the following way:



Step 1. The messages are initialised

Qz(-;-) = Gi, Qz(-;-)) =1-y (4)
for all j.

Step 2. The messages are translated:

R(l) _ Q(0)3 (5)

jil T i
0 _
Ry =1 (6)
These equations can be interpreted by the fact that the higher the

probability that 4 isn’t in the set, the higher the probability that 4’ is.
However there is no penalty for i’ not being in the set.

Step 3. Calculate the posterior probability:

(2) (z)

z g; " Hj Rji
P =S (7
where 7 is a normalising constant. This works out the overall probabil-
ity that given the information so far ¢ is in the set. This probability is
used as the stopping condition for the algorithm. When the posterior
probability converges to a certain threshold the algorithm is stopped

and the result taken.

Step 4. The new messages are formed:

o _ 97 Tys Ry (®)
iy 7!
This looks similar to the posterior probability, but in this case when

calculating the message back to the check node, the previous message
from that node is ignored.

Step 5. Go to Step 2.

2.1 Implementation

As can be seen in the above description of the sum product algorithm, in

this particular case the message passing to the check nodes is actually a

redundant step. Therefore, step 2 and step 4 can actually be compressed

into a single pass, and so the algorithm takes a particularly simple form:
(0)

(1)
1 9i "y Qi
ng) = Z][/ 2> (9)

3Because each check node is on the edge between only two variable nodes, knowing i
and j uniquely defines i'.




(0)

0 g;
Qz(j) = VAQ (10)

where Z” is the normalising constant s.t. Qz(jl.) + QZ(?) =1.

Also, in the implementation of the algorithm, instead of explicitly defin-
(z)

ing the g;”’ constants, they were defined as:
o = B ) (1)
@
where again « is defined so gl(o) + gfl) = 1. This was done so that the prior

probabilities could be varied over a number of different scales, and also be-
cause, as seen later the 3 variable does indeed have some of the properties
associated with temperature, as used in methods such as simulated anneal-
ing. Also this allows weights w; to be introduced, and so the algorithm can
be applied to the weighted form of the problem.

3 Experimental Results and Discussions

3.1 Single graph experiments

The first set of results obtained, were a set of tests on simple, randomly
generated graphs. The graphs were created so that the probability of any
two edges being linked by an edge was p. This is known as the density of
the graph*. The density of a graph is directly related to the mean degree
< D >% by,

2-|E|

<D>=(n-1)-p= (12)

where n is the number of vertices in the graph, and |E| is the number of
edges.

It emerged from these tests that there are only two end states for the
algorithm. The first is for the algorithm to converge towards a steady state
solution. This typically occurs within 20 iterations and is likely to be much
quicker than this. An example of this type of convergence is shown in figure
4.

The second end state for the algorithm is for it to enter into an “alter-
nating” state. This is where the algorithm flips between two different states
every iteration. Note that this state is stable, it is not a rounding error nor
is it just “converging very slowly”. An example of this type of end state is
shown in figure 6.

To demonstrate the difference between simply converging slowly, and
the alternating state, a final example is shown in figure 8. For this graph

“In the results, the value quoted as p has been calculated from the graph itself, as a
finite size graph will not have exactly the density requested.
SWhere the mean degree is simply the mean of the degree over the vertices.



Figure 3: An example graph. The mean degree is 1.9.
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Figure 4: The convergence of the algorithm, # = 5. Each line represents
the posterior probability of a vertex varying as the algorithm proceeds. The
algorithm converges within 8 iterations.
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Figure 5: An example graph that demonstrates alternating behaviour. The

mean degree is 3.5.
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Figure 6: The alternating state of the algorithm 8 = 2.5.Each line represents
the posterior probability of a vertex varying as the algorithm proceeds.
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Figure 7: An example graph that demonstrates slow converging behaviour.

The mean degree is 2.
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Figure 8: The slow convergence of the algorithm g8 = 9.0.Each line represents
the posterior probability of a vertex varying as the algorithm proceeds.
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Figure 9: The variation of the posterior probability with 8. Each line rep-
resents the final posterior probability of a particular vertex, over a number
of different runs with varying values of 3.

the algorithm has no way of distinguishing between the vertices, due to the
symmetry of the graph. Because of the it converges very slowly, as the only
converging factor is the fact that the prior is not equal to one.

From these results, stopping conditions for the algorithm were devel-
oped. Only two such conditions are required: One for when the algorithm
converges, the other to catch when the algorithm goes into an alternating
state. This is born out by all the other results in this paper, where the
algorithm has always stopped, it has never simply run out of iterations.

The final test carried out on the single graphs was to discover what
effects varying 8 has on the results for the graph. An example of the results
of this test are shown in figure 9. In this case the graph used was the one in
figure 3. This result shows that increasing (8 has the effect of increasing the
difference in the posterior probability between vertices considered in the set,
and those not in the set i.e. improving the quality of the solutions. Notice
that at about 8 = 14 the lines become unstable. This is simply a result of
equation 11, where, for large values of g the floating point routines reach
their limit of numerical accuracy.

3.2 Convergence conditions

The next set of tests run were to attempt to find the general properties of
the algorithm when run on any graph. To do this a large number of random
graphs were generated with the desired properties for each test (size and
density). Then the algorithm was run on each graph until it had converged
or was alternating, and the results collated.

For the first test, the conditions under which the algorithm alternated

13
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Figure 10: Conditions under which the algorithm alternates. Each point
represents the fraction of 100 runs of the algorithm which did not converge.
In this case the value of 8 used was 1.3.

were investigated. It became very quickly became obvious that it is not the
density of the graph that is important, but the mean degree. This can be
seen in figure 10. There is a very clear transition between graphs which
converge to a steady state result, and those which alternate. The results
also show that the action of the algorithm is almost independent of the size
of the graph, as the transition point remains the same, even if the transition
zone narrows. This indicates that for many properties of the algorithm
the dependence on graph size does not need to be investigated, but their
dependence on mean degree does. The makes sense as the algorithm is a
local one.

The only other variable that the failure of the algorithm to converge
could depend on is 8. Figure 11 shows this dependence. Lower values of
B push the transition to higher values of the mean degree. This is very
useful as the best algorithm is one which converges for the widest variety
of graphs. There is however a caveat, as for low values of 8 the algorithm
does not give such confident predictions (figure 9.). This motivates having
a [ value which varies adaptively over the course of a single run, to get the
best possible solution over the widest range of graphs, and a form of this is
implemented later in the paper.

3.3 Timing

Possibly the most important motivation for designing new heuristic algo-
rithms for the maximum independent set problem is that of speed. The
next tests measure the speed of the sum-product algorithm under a number
of conditions.

14
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Figure 11: Conditions under which the algorithm alternates. Each point
represents the fraction of 100 runs of the algorithm which did not converge.
In this case the value of 8 used was 1.3.
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Figure 12: Variation in the speed of the algorithm with graph size.
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Figure 13: Variation in the speed of the algorithm with mean degree. Each
point is an average over 100 runs of graphs, each of size 60.

The first test (figure 12.) measures the variation of the speed of the
algorithm with graph size. Each point is an average over 30 graphs generated
at the same size and with mean degree 1.5. The algorithm was run with a
0 value of 1.0. The results were taken so that if the graph alternated the
time to alternation was also measured. This is because it is important to
know how long it takes for the algorithm to fail to find a solution, as well as
succeed. The best fit of the results gives the time proportional to n?, which
is consistent with the way the algorithm works. This is far superior to the
possible exponential solution time of the exact solvers.

The next set of results in figure 13 show the variation in time with mean
degree. These results are particularly interesting as they show an easy-hard-
easy transition. For low values of the mean degree the algorithm finds the
solutions very quickly. This is because in most cases the solution is actually
trivial. As the mean degree increases, certain symmetrys and cycles are in-
troduced into the graph and the algorithm takes longer to converge. As it
increases further, it reaches the point where some of the graphs give alter-
nating solutions. At high enough mean degree every graph starts alternating
almost immediately and so the algorithm stops very quickly.

3.4 Quality of solutions

The most important test of any algorithm is: Does it actually find good
solutions? To find this out an exact solver was implemented. This was
the DFMAX algorithm [11], used as a standard benchmark for this problem
in the 1993 DIMACS challenge. 450,000 random graphs were generated,
with varying mean degree, each with 20 vertices. Both the sum-product
algorithm and DFMAX were run on each graph, the sizes of the maximum

16



independent sets compared, expressed as a fraction and plotted. This made
it possible to see how close the algorithm had got to finding the maximum
independent set.

One problem found, was the fact that sometimes the algorithm was con-
verging to a solution that wasn’t actually an independent set. To get round
this a “pruning” routine was added. This routine first removes all offending
vertices, removing the ones with the highest degree first. Because this is
not actually a result of the algorithm itself, these pruned points have been
plotted in a different style.

The bands visible in figures 14(a), 15(a) and 16(a) are simply due to the
finite size of the graph and the discrete nature of the problem. Histograms
have also been generated over the whole set of data points so as to give a
better picture of the quality of the results.

The results from these experiments confirm the early prediction that
higher values of 8 lead to more accurate results and therefore independent
sets closer to the maximum. However increasing § also brings the problem
of finding solutions which are not independent sets, leading to the pruning
exhibited in figure 16(c). Also, even for relatively high values of 3 there
is still significant spread in the data, with a small but important fraction
finding a set less than 80% the size of the maximum possible.

3.5 Random perturbations

One of the biggest problems with the algorithm as described so far is its
inability to resolve the symmetry in a problem, for instance, being unable
to choose between vertices 4 and 10 in figure 3. To attempt to resolve
this issue, two slightly different methods were introduced. The first was to
perturb the weights of each vertex by a small, random amount, e.g a uniform
value in the range [—0.05,0.05]. The value was chosen so that it was large
enough to produce an effect, but small enough that inappropriate vertices
were not chosen, due to a large perturbation being applied.

The second method was much the same as above, but applied in a sys-
tematic manner. The method runs through each pair of edges that are
connected by an edge and slightly increases the weight of one of them and
deceases the other. This has the effect of giving one vertex in each pair a
slight preference to be in the set.

These methods were then tested in all of the ways described in the pre-
vious sections and found to have almost exactly the same performance in
most areas as the non perturbed algorithm. The only difference is an im-
provement in the quality of the results at the very low mean degree area of
the graph. See figure 17(a).
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Figure 14: The quality of the solutions found with g = 1.
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Figure 15: The quality of the solutions found with g = 2.
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3.6 Varying (8 adaptively

It was noted earlier that a low value of 3 gives a wider range of graphs which
converge to a solution, while a higher value gives better results when the
algorithm does converge. This suggests varying the value of § during the
course of a single run.

In this case the method was introduced in a simple as possible form.
Every iteration J is increased by 0.1. If the state starts to alternate then §
is decreased by a variable AS, which is then increased. If § < 0 then the
algorithm stops. Af is initially set at 0.5. This rather complicated method
ensures that the algorithm will always stop at some point, and does have
a chance of recovering if it starts alternating. The stopping condition for
convergence is the same as before.

This algorithm does appear to have a number of advantages over previous
methods. In figure 18 it is shown that the method has a higher transition
point than a typical high 8 attempt, but it has the same quality of solution as
a method run with this high 8. The main disadvantage is the relatively high
percentage of points pruned. The other disadvantage is the time penalty
incurred in using this adaptive algorithm. Typical times are 5-10 times
longer than the equivalent non-adaptive version.

3.7 Genetic algorithm

For comparative purposes a basic genetic algorithm was introduced. This
was implemented using the genetic algorithm library GA-Lib [12]. The
algorithm used was carried out over 400 generations, each with a population
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Figure 19: The quality of the solutions found using the adaptive algorithm.
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of 50 genes, on graphs with 20 vertices. It had a mutation rate of 0.001 and
a cross-over probability of 0.6. The fitness function used was f(z) = 0 if the
gene is not a independent set, and f(Z) = k, where k is the size of the set,
if it is an independent set. This is the same fitness function as used in [3]

4 Further Discussions

4.1 Implications

The most important question to ask is: Does the algorithm work? The
answer is, yes, but in a fairly restrictive range of graphs. The algorithm
does however have a number of strong points.

4.1.1 Strengths

The algorithm is very fast. The sum-product algorithm typically takes
just 10s of milliseconds to solve a 20 vertex graph, while the genetic
algorithm takes almost a full second.

Accurate at low mean degree. For a mean degree of below about 4, the
adaptive algorithm, with pruning, typically finds greater than 80%
of the maximum independent set. The quality of the solutions can
be improved by adding a small perturbation to the weights, which
breaks the symmetry, but finding how much perturbation to use is not
obvious, and depends on the particular graph that the algorithm is
running on.

Computational simplicity. The algorithm only takes O(n?) computa-
tions to initialise and again, each iteration takes O(n?) computations
to complete. Thus, a typical run consisting of 15 iterations, on a 20
vertex graph would only take about 200,000 multiplications, far less
than the equivalent for other algorithms.

4.1.2 'Weaknesses

Alternating solutions. Due to the alternating solution problem the algo-
rithm can really only be applied to graphs with a mean degree of less
than 3-4. For small graphs e.g. ones with 20 vertices, a mean degree
of 3 means a density of about 15%. As the graph size increases the
density for a given mean degree falls with n. This means that for a
graph with 500 vertices the density is only about 0.6%. Therefore for
most practical problems, the sum-product algorithm can only be ap-
plied to an extremely small subset of the possible graphs®. It is most

5In the 1993 DIMACS challenge, typical graphs had 100-4000 vertices and densities of
about 0.5. This leads to mean degrees in the 100s
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likely that the alternating state is caused by having a large degree of
local symmetry in the form of small cycles, as well as having a large
number of inputs to each vertex.

Symmetry breaking. While for some uses of the sum-product algorithm,
the fact that the symmetry of the problem is reflected in the answer
is a strong point, this is not the case when it comes to finding the
maximum independent set. Here the symmetry causes the algorithm
to become “uncertain” and can lead to suboptimal solutions as in
figure 8.

Finding non independent sets. One of the big problems with the adap-
tive version of the algorithm is its tendency, at higher values of the
mean degree, to converge to solutions which are not independent sets.
These results then need to be pruned to obtain valid results. It is
not known why the algorithm converges to these solutions, but it does
seem to be a result of using a higher value for 3, as some of the points
for =5 are pruned as well (see figure 16(c)).

4.2 Comparison with other algorithms

It is hard to compare the sum-product algorithm with other methods for
solving the maximum independent set problem for precisely the reasons ex-
plained above. In most other work on the problem, the various algorithms
tend to be tested on large (> 100 vertices), dense (p > 0.5) graphs, pre-
cisely the ones for which the sum-product algorithm does not work well
for. Therefore the only comparisons possible are with the simple genetic
algorithm implemented as described above.

In this case the sum-product algorithm compares quite well to the genetic
algorithm. It is far faster, and, for the graphs it finds the solutions of, can
be considered more accurate. However the genetic algorithm does not have
any limitations on the mean degree. The quality falls of at higher values
simply because it is harder for a random process to produce an independent
set. This problem can be partially solved by using a better, graded fitness
function like equation 2, or by using a different heuristic to “repair” each
gene between generations [3]. Here repair means using a greedy heuristic
to form a maximal independent set from the gene. This way the genetic
algorithm is only used to choose between different maximal sets.

4.3 Future work

There are a number of ways in which the algorithm could be improved, or
used in slightly different ways.

Damping of alternations. One way to try and stop the algorithm from
alternating so easily would be to use some kind of damping mechanism.
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This would take the form of the messages being a weighted average of
the new messages and the old message e.g.

QY =f-Qiv +(1-f)- QL (13)

where f is a number in the range 0 to 1. This would hopefully remove
some of the alternating effect, or at least delay its onset.

Change update schedule. In Hopfield network theory, the dynamics of
the system are only guaranteed to minimise the energy if the neurons
are updated asynchronously. If they are all updated at the same time
then alternating states can form. Following this example, updating
the sum-product algorithm one vertex at a time may help to remove
the alternations.

Improve the adaptive algorithm. At the moment the adaptive algorithm
is a very simple one which does not really take into account how well
the algorithm is converging. As show in figure 9 the posterior prob-
abilities have a ceiling value of 3, beyond which the results do not
improve. A better algorithm would perhaps converge 3 towards this
ceiling in a exponential manner, and would decease (# in a similar
manner if alternation started.

Integration with a different heuristic. Good results have been obtained
with genetic algorithms by combining them with a greedy heuristic [3].
Perhaps combining the sum-product algorithm with the genetic algo-
rithm would also give improvements in the results.

Another possible way of combining the sum-product algorithm with a
different heuristic would be to use the simulated annealing method for
controlling the temperature to control the value of 3.

5 Conclusions

The sum-product algorithm was implemented so as to solve the maximum
independent set problem. The algorithm was found to have a number of
strengths, in its speed and its accuracy on low mean degree graphs. How-
ever, the it was found to fail at higher mean degree, by finding alternating
solutions.

Methods to try and break the symmetry of the problem were introduced
but found to only have a very small effect.

A simple adaptive algorithm for # was introduced, and found to improve
the quality of the solutions. However the adaptive algorithm reduced the
speed of the algorithm by about 10 times. The results were compared to
those for a simple genetic algorithm, and the sum-product algorithm found
to be less useful for most graphs, but better for very low density ones.
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A Main program files

This file is the header for the CGraph class which contains most of the
implementation of the algorithm.

// CGraph.h: interface for the CGraph class.
//
L11111101000000 000700 0017777770707717177171171711111777171711117111111

#include "HelperFunctions.h"

#include "CArray.h"

#include "CMatrix.h"

#include "CProb.h"

#include <string.h>

#include "ga/GASimpleGA.h"
#include "ga/GA1DBinStrGenome.h"

#define ALTERNATING 2

#define NMAX 1000
#define REQORDER

class CGraph
{

// Required for message passing algorithm

CMatrix<CProb, CProb&>mMessages[2];
CMatrix<int, int>mEdges;

CArray<CProb, CProb&>aPrior;
CArray<CProb, CProb&>aPosterior;
CArray<float, float> aWeight;

CArray<float, float>aResults[3];
CArray<int, int> aResult;

int bResultFirst;
int nSize;
int nEdges;

int nNewMess;
int n0ldMess;

int bInitialised;
int bFirstTime;
int nNewArray;

// Required for dfmax algorithm

int bDfmaxFirstTime;

int nSetlim;

int nBestSize;
CArray<int, int> aBestSet;

// Requires for genetic algorithm
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int bGAFirstTime;

float fBestScore;
CArray<int, int> aGABestSet;
public:

CGraph(void);

“CGraph(void);

// Initialiseation and saving routines

int Initialise(float fED, int nS);
int Initialise(char* strName);

int Initialise(int nS);

int Initialise_Binary_DIMACS(char* strName);

int SaveAll(char* strName);
int Save_Binary_DIMACS(char* strName);

// Message passing routines

void InitMessages(void);

void InitPrior(float fB);

void SetAllPrior(float fB);

void AddEdge (int v1, int v2);

void SetWeight(int v, float fWeight);
float CalcEdgeDensity(void);

float CalcMeanEdgesPerVertex(void);
void AddNoise(float f£N);

void Kick(float fK);

void CalculatePosteriorProb(void) ;
void Dolteration(float fBeta);

int FoundAnswer(void);

int GetSize(void) {return nSize;};
int GetEdge(int v1, int v2);

int GetDegree(int v);

float GetPosterior(int v);

float GetPrior(int v);

float GetWeight(int v);

void SetResult(void);

int GetResult(int v);

int IsIndSet(void);

void Prune(void);

// Dfmax routines
void DoDFMax(int nSL);
int MaxInd(int top, int goal, int *array,

int depth, int *set);

int GetBestSet(int v);
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// Genetic routines

void DoGA(int nPop, int nGen, float fMut,
float fCross, float (*fp)(GAGenome &g));

int GetGABestSet(int v);

float GetBestScore(void);

};

This is the main CGraph file.

// CGraph.cpp: implementation of the CGraph class.
//
HIHIITIIIIITL LI L I i i iiiiiiniieiiieiiiiiiieiiiieieiieiil

#include "stdafx.h"
#include "CGraph.h"

CGraph: :CGraph(void)
{
srand((((unsigned int) (time(NULL)))*rand())%1000000);
bInitialised = FALSE;
bFirstTime = TRUE;
bDfmaxFirstTime = TRUE;
bGAFirstTime = TRUE;
nNewMess = 1;

n0ldMess = 0;
bResultFirst = TRUE;
};
CGraph: : "CGraph(void)
{

bInitialised = FALSE;
}

int CGraph::Initialise(float fED, int nS)
{

int i, j;

ASSERT(fED >= 0.0f && fED <= 1.0f);

if(bInitialised)
{
ASSERT(nS = nSize);
T

nSize = nS;
nEdges = 0;

if(!bInitialised)
{
ASSERT (mMessages [0] . SetSize(nSize, nSize));
ASSERT (mMessages[1] .SetSize(nSize, nSize));
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ASSERT (mEdges .SetSize(nSize, nSize));

ASSERT (aPrior.SetSize(nSize));
ASSERT (aPosterior.SetSize(nSize));
ASSERT (aWeight.SetSize(nSize));

};
bInitialised = TRUE;

mEdges .SetA11(FALSE) ;
aWeight.SetA11(1.0f);

for(i = 0; i < (nSize-1); i++)
{

for(j = i+l; j < nSize; j++)

{

if(drnd() < £fED)

{

AddEdge (i+1, j+1);

T

};

};

CalcEdgeDensity();
CalcMeanEdgesPerVertex() ;

return TRUE;
};

int CGraph::Initialise(char* strName)
{

FILE* fStream;

int i,j, nConnections, nVert, nNull;
int nTemp;

float fTemp;

ASSERT(!bInitialised);
nEdges = 0;

fStream = fopen(strName, "r");
if (! £fStream) return FALSE;

fseek(fStream, OL, SEEK_SET);

fscanf(fStream, "Graph description file\n");
if (fscanf(fStream, "Number of vertices: %i\n", &nSize) != 1) return FALSE;
if (fscanf(fStream, "Number of Edges: %i\n", &nEdges) != 1) return FALSE;

ASSERT(mMessages [0] .SetSize(nSize, nSize));
ASSERT(mMessages[1] .SetSize(nSize, nSize));
ASSERT(mEdges .SetSize(nSize, nSize));

ASSERT(aPrior.SetSize(nSize));

ASSERT (aPosterior.SetSize(nSize));
ASSERT(aWeight.SetSize(nSize));
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fscanf(fStream, "Weights: ");
for(i = 0; i < nSize; i++)

{

if(fscanf (fStream, "%f", &fTemp) !'= 1) return FALSE;;

aWeight.Element (i) = fTemp;
};

bInitialised = TRUE;

for(i = 1; i <= nSize; i++)

{

if(fscanf (fStream, "\nVertex %i: Number of edges: %i.

&nNull, &nConnections) != 2) return FALSE;

for(j = 0; j < nConnections; j++)

{

if (fscanf (fStream, "%i", &nVert) != 1) return FALSE;
AddEdge(i, nVert);

};

};

fclose(fStream);
return TRUE;
};

int CGraph::Initialise(int nS)
{
ASSERT(!bInitialised);

CProb pTemp;
pTemp.p = 0.5f;
pTemp.q = 0.5f;
nEdges = 0;
nSize = nS;

ASSERT (mMessages [0] .SetSize(nSize,nSize)) ;
ASSERT(mMessages[1] .SetSize(nSize,nSize));
ASSERT(mEdges .SetSize(nSize, nSize));

ASSERT(aPosterior.SetSize(nSize));
ASSERT(aPrior.SetSize(nSize));
ASSERT(aWeight.SetSize(nSize));
aPosterior.SetAll(pTemp) ;

mEdges .SetA11(FALSE) ;
aWeight.SetA11(1.0f);
bInitialised = TRUE;

return TRUE;

};

void CGraph::SetAllPrior(float f£B)
{
ASSERT(bInitialised);

int 1i;
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CProb pInit;
float fNorm;

for(i = 0; i < nSize; i++)
{
fNorm = 1.0f + float(exp(fB*aWeight.Element(i)));

pInit.
pInit.q

= float(exp(fB*aWeight.Element (i) )/fNorm);
1.0f/fNorm;

]
|

aPrior.Element(i) = pInit;
};
};

void CGraph::AddEdge(int vi, int v2)
{
ASSERT(bInitialised);

vi--;
v2--;

if (mEdges.Element(vl, v2) == TRUE) return;
if (mEdges.Element(v2, v1) == TRUE) return;

mEdges .Element(v1,v2) = TRUE;
mEdges.Element(v2,v1) = TRUE;
nEdges++;
};
int CGraph::GetEdge(int vi, int v2)
{

ASSERT(bInitialised);

vi--;

v2--;

if (mEdges.Element(vl, v2) == TRUE) return TRUE;

return FALSE;
};

float CGraph::CalcEdgeDensity(void)
iloat fEdgeDensity;
ASSERT(bInitialised);

int nMaxEdges;

nMaxEdges = (nSize*(nSize-1))/2;

fEdgeDensity = float(nEdges)/float(nMaxEdges) ;

return fEdgeDensity;
};

float CGraph::CalcMeanEdgesPerVertex(void)

{
float fMeanEdgesPerVertex;
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ASSERT(bInitialised);
fMeanEdgesPerVertex = float(2*nEdges)/float(nSize);

return fMeanEdgesPerVertex;

};

void CGraph::InitPrior(float fB)
{

SetAl1Prior(fB);

InitMessages();

};

void CGraph::InitMessages(void)
{
ASSERT(bInitialised);

int i, j;

for(i = 0; i < nSize; i++)

{

for(j = 0; j < nSize; j++)
{

if (mEdges.Element(i,j))

{

mMessages [0] .Element(i,j) = aPrior.Element(i);
};
};
};
};

int CGraph::SaveAll(char* strName)

{
ASSERT(bInitialised);

FILEx fStream;
int i,j, nConnections;

fStream = fopen(strName, "w");
if (!fStream) return FALSE;

fprintf (fStream, "Graph description file\n");
fprintf(fStream, "Number of vertices: %i\n", nSize);
fprintf (fStream, "Number of Edges: %i\n", nEdges);

fprintf (fStream, "Weights: ");

for(i = 0; i < nSize; i++)

{

fprintf (fStream, "%f ", aWeight.Element(i));
};

for(i = 0; i < nSize; i++)

{

nConnections = 0;

for(j = 0; j < nSize; j++)

{

if (mEdges.Element(i,j)) nConnections++;

};
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fprintf (fStream, "\nVertex %i: Number of edges: %i. Connected to: ",
i+1, nConnections);

for(j = 0; j < nSize; j++)

{

if (mEdges.Element(i,j)) fprintf(fStream, "%i ", j+1);
};
};

fclose(fStream);
return TRUE;
};

int CGraph::Save_Binary_DIMACS(char* strName)

{

int i, j, nlLen = 0;

FILE* fStream;

char strInfo[1024];

unsigned char data[512] [64];

int byte, bit, mask;

unsigned char masks[8] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80};

fStream = fopen(strName, "w");
if (!fStream) return FALSE;

nLen += sprintf(strInfo + nLen, "c Graph description file\n");
nLen += sprintf(strInfo + nlen, "c Number of vertices: %i\n", nSize);
nLen += sprintf(strInfo + nLen, "c Number of Edges: %i\n", nEdges);

nLen += sprintf(strInfo+ nLen, "c Weights: ");

for(i = 0; i < nSize; i++)

{

nLen += sprintf(strInfo + nLen, "/f ", aWeight.Element(i));
};

nLen += sprintf(strInfo + nLen, "\np DIMACS_DATA %i %i\n", nSize, nEdges);

fprintf (fStream, "%i\n", strlen(strInfo));
fprintf (fStream, "%s", strInfo);

for(i = 0; i < nSize; i++)
{
for(j
{
bit = 7 - (j & 0x00000007);
byte = j >> 3;

0; j < i; j++)

mask = masks[bit];

if (mEdges.Element (i, j))
{

datal[i] [byte] |= mask;

}

else

{

data[i] [byte] &= "mask;
};
};
};

for(i = 0; i < nSize; i++)

{
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furite(datal[i],1, int((i + 8)/8), fStream);
};

fclose(fStream);
return TRUE;
};

int CGraph::Initialise_Binary DIMACS(char* strName)
{

int i, j, nLen = 0;

FILEx fStream;

char strInfo[1024];

unsigned char data[512] [64];

int byte, bit, mask;

unsigned char masks[8] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40,
char* cPos;

char strTemp[100];

char c;

int stop = FALSE;

fStream = fopen(strName, "r");
if (1£fStream) return FALSE;

if (!fscanf (fStream, "%i\n", &nLen))
return FALSE;

fread(strInfo, 1, nLen, fStream);

nSize = 0;
cPos = strinfo;

while(!stop && (c = *cPos++) != ’\0’)

{

switch(c)

{

case ’c’:

while((c = *cPos++) != ’\n’ && c != ’\0’);
break;

case ’p’:

sscanf(cPos, "Ys %i %i\n", strTemp, &nSize, &nEdges);
stop = TRUE;

break;

default:
break;

}
};

if(nSize == () return FALSE;
nEdges = 0;

ASSERT(mMessages [0] .SetSize(nSize, nSize));
ASSERT (mMessages[1] .SetSize(nSize, nSize));
ASSERT(mEdges .SetSize(nSize, nSize));
ASSERT(aPrior.SetSize(nSize));
ASSERT(aPosterior.SetSize(nSize));
ASSERT(aWeight.SetSize(nSize));

alleight .SetA11(1.0f);
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for(i = 0; i < nSize; i++)

{

fread(data[i], 1, int((i + 8)/8), fStream);
};

bInitialised = TRUE;

for(i = 0; i < nSize; i++)
{

for(j = 0; j < i; j++)

{

bit = 7 - (j & 0x00000007) ;
byte = j >> 3;

mask = masks[bit];

if((datal[i]l [byte] & mask) == mask) AddEdge(i+1, j+1);
};
};

fclose(fStream);
return TRUE;
};

void CGraph::CalculatePosteriorProb(void)
{

int i, j;

ASSERT(bInitialised);

for(i = 0; i < nSize; i++)

{
aPosterior.Element(i) = aPrior.Element(i);
for(j = 0; j < nSize; j++)
{
if (mEdges.Element(j, i) == TRUE)
{

aPosterior.Element(i).p *=
mMessages[n0ldMess] .Element(j, i).q;

};
};
aPosterior.Element (i) .Normalise();
};
return;
};
int CGraph::FoundAnswer(void)
{
int nAltCheckArray;
int i, j;
int bFoundAnswer;
if (bFirstTime)
{

bFirstTime = FALSE;
for(i = 0; i < 3; i++)
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{
nNewArray = 0;
aResults[i].SetSize(nSize);
aResults[i] .SetAl11(-1.0);

};

3

for(i = 0; i < nSize; i++)

{

aResults[nNewArray] .Element (i) =
aPosterior.Element(i).p;

};

nAltCheckArray = nNewArray;
nNewArray++;

if(nNewArray >= 3) nNewArray = 0;

bFoundAnswer = TRUE;

for(i = 0; i < nSize; i++)
{

for(j = 1; j < 3; j++)

{

if (fabs(aResults[0] .Element (i) -
aResults[j].Element(i)) > 0.01)
bFoundAnswer = FALSE;

};

};

if (!bFoundAnswer)

{

bFoundAnswer = ALTERNATING;

for(i = 0; i < nSize; i++)

{

if (fabs (aResults[nNewArray] .Element (i) -
aResults[nAltCheckArray] .Element(i)) > 0.001)
bFoundAnswer = FALSE;

};
};
return bFoundAnswer;
};
void CGraph::AddNoise(float £N)
{
int i;
for(i = 0; i < nSize; i++)
{
aWeight.Element(i) = aWeight.Element(i) + (2.0fx((float)drnd()-0.5f)*fN);
}
return;
}
void CGraph::Kick(float fK)
{
int i, j;

float fKick;

for(i = 0; i < nSize-1; i++)
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{

for(j = i+l; j < nSize; j++)

{
if (mEdges.Element (i, j) == TRUE)
{
fKick = 2.0f*((float)drnd()-0.5f) *fK;
aWeight.Element(i) = aWeight.Element(i) + fKick;
aWeight.Element(j) = aWeight.Element(j) - fKick;
}
};
}
return;
}
void CGraph::Dolteration(float fBeta)
{
int i, j, i2;
float fMaxNoise, fN;
ASSERT(bInitialised);
SetAllPrior(fBeta);

for(i = 0; i < nSize; i++)
{
for(j = 0; j < nSize; j++)
{
if (mEdges.Element (i, j) == TRUE)
{
mMessages [nNewMess] .Element(i, j) =
aPrior.Element(i);
for(i2 = 0; i2 < nSize; i2++)
{
if(i2 == j) continue;
if (mEdges.Element(i2, i) == TRUE)
{
mMessages [nNewMess] .Element(i, j).p *=
mMessages [n0ldMess] .Element(i2, i).q;

};
};
mMessages [nNewMess] .Element (i, j).Normalise();
};
};
};

nNewMess = nOldMess;
n0ldMess = 1 - nNewlMess;

};

void CGraph::SetWeight(int v, float fWeight)
{

aWeight.Element(--v) = fWeight;

};

float CGraph::GetPosterior(int v)
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{
ASSERT(bInitialised);

v--;

return aPosterior.Element(v).p;

};
float CGraph::GetPrior(int v)
{ ASSERT(bInitialised);

v-—;

return aPrior.Element(v).p;

};
float CGraph::GetWeight(int v)
{ ASSERT(bInitialised);

v-—;

return aWeight.Element(v);

};

int CGraph::GetDegree(int v)
{
int i;
int nCount = 0;
for(i = 1; i <= nSize; i++)
{

if (GetEdge(v, i) == TRUE) nCount++;
};

return nCount;

};

void CGraph::SetResult(void)

{
int i;
if (bResultFirst)
{
bResultFirst = FALSE;
aResult.SetSize(nSize);
};

aResult.SetA11(0);

for(i = 0; i < nSize; i++)

{
if (aPosterior.Element(i).p > 0.5) aResult.Element(i) = 1;
}
};
int CGraph::GetResult(int v)
{
v--;
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return aResult.Element(v);

};

int CGraph::IsIndSet(void)
{

int i, j;

for(i = 0; i < nSize-1; i++)
for(j = i+l; j < nSize; j++)
{
if(aResult.Element(i) == 1 && aResult.Element(j) ==
&& GetEdge(i+1, j+1) == TRUE)
{
return FALSE;
};
};
return TRUE;
};

void CGraph: :Prune(void)
{

int i, j;

while(IsIndSet() == FALSE)
{
for(i = 0; i < nSize-1; i++)
for(j = i+l; j < nSize; j++)
{
if (aResult.Element(i) == 1 &% aResult.Element(j) ==
&& GetEdge(i+1, j+1) == TRUE)
{
if (GetDegree(i+1l) >= GetDegree(j+1)) aResult.Element(i) = 0;
else aResult.Element(j) = 0;
};
}
}
};

// The dfmax routine - modified to be run as a subroutine

void CGraph::DoDFMax(int nSL)
{
int i, j;
int cand,newcand;
int dmax, x, y;
int vertex[NMAX];
int set[NMAX];
int degree[NMAX];
int bestset [NMAX];

if (bDfmaxFirstTime == TRUE)
{
bDfmaxFirstTime = FALSE;
aBestSet.SetSize(nSize);
}

aBestSet.SetA11(0);
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nSetlim = nSL;
#ifdef REORDER

for (i=1;i<=nSize;i++)
{

degree[i] = 0;

for (j=1;j<=nSize;j++)

if (!GetEdge(i,j)) degreel[i]++;
}

dmax = -1;
for(i=1;i<=nSize;i++)
{
if (degree[i] > dmax)
{
dmax
cand
}
};
vertex[nSize] = cand;
for(j=nSize-1;j>=1;j--)

degree[i];
i;

{
degree[cand] = -9;
dmax = -1;
for (i=1;i<=nSize;i++)
{

if (!GetEdge(cand,i)) degree[i]--;
if (degree[i] > dmax)
{
dmax = degreel[i];
newcand = ij;
}
}
vertex[j] = cand = newcand;
};
#else
for (j=1;j<=nSize;j++) vertex[j]l = j;
#endif

nBestSize 0;
nBestSize = MaxInd(nSize, nSetlim, vertex, 1, set);

for(i = 0; i < nSize; i++)

{
bestset[i-1] = FALSE;
};
for(i = 1; i <= nBestSize; i++)
{
bestset[aBestSet.Element(i)-1] = TRUE;
};
for(i = 0; i < nSize; i++)
{
aBestSet.Element(i) = bestset[i];
};
};

int CGraph::MaxInd(int top, int goal, int *array, int depth, int *set)
{

int newarray[NMAX];
int i,v,u,w,z;
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int best, restbest, newgoal;
unsigned *bitloc;

int *pnew, *pold;

int canthrow;

if(top <= 1) {

if(top == 0) depth--;

if(depth > nBestSize) {

nBestSize = depth;

if(top == 1) set[nBestSize] = array[top];

for(i=1;i<=nBestSize;i++)
aBestSet.Element(i) = set[i];

}
return(top);
T

best = 1;

newgoal = goal-1;
if (newgoal <= 1) newgoal = 1;
for (i = top; i >= goal; i--) {
pnew = newarray;
w = array[il;
set [depth] = w;
canthrow = i - goal;
pold = array+l;
while (pold<array+i) {
z = *pold++;
if (!GetEdge(z,w)) {
*++pnew = z;

} else {
if (canthrow == 0) goto breakout;
canthrow--;

}

}

restbest = MaxInd(pnew-newarray,newgoal,newarray,depth+l,set);
if (restbest >= newgoal) {

best = newgoal = restbest+l;

goal = best+1;

}

if (top == nSize) {

}

breakout:;

}

return best;

};
int CGraph::GetBestSet(int v)
{

ASSERT(bInitialised);

v--;

return aBestSet.Element(v);

};

//GA routines

void CGraph::DoGA(int nPop, int nGen, float fMut,
float fCross, float (*fp)(GAGenome &))

{
/*
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Genetic algorithm used is GALib,

Copyright 1995-1996 Massachusetts Institute of Technology (MIT)
all rights reserved

Copyright 1996-1999 Matthew Wall (the Author)
all rights reserved

*/

int 1i;

if (bGAFirstTime == TRUE)
{
aGABestSet.SetSize(nSize) ;
bGAFirstTime = FALSE;
}

aGABestSet.SetA11(0);

GA1DBinaryStringGenome genome(nSize, fp);

GASimpleGA ga(genome);
ga.populationSize(nPop);
ga.nGenerations(nGen) ;
ga.pMutation(fMut);
ga.pCrossover(fCross);
ga.evolve();

GA1DBinaryStringGenome & g =
(GA1DBinaryStringGenome &)ga.statistics().bestIndividual();
fBestScore = g.score();

for(i = 0; i < nSize; i++)
aGABestSet.Element(i) = g.gene(i);

return;
};
int CGraph::GetGABestSet(int v)
{ ASSERT(bInitialised);

v--;

return aGABestSet.Element(v);

};
float CGraph::GetBestScore(void)
{
return fBestScore;
};
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B Example program

This is an example of how the CGraph class can be used to solve the max-
imum independent set problem. This program implements the adaptive
algorithm for 8, and shows how to use the DFMAX and genetic methods.
The graphs should be saved in the binary DIMACS format.

// sol.cpp : Defines the entry point for the console application.
//

[17101777170717771717171777777717117171171771711711717117117
// Includes
[1711177117171717171717177777771171117117177111171171717117

#include "../graph/stdafx.h"

#define STEP 0.5f
#define TOL 0.01f

float Objective(GAGenome& gen);
CGraph* g = NULL;

117111771171117711711171777777117711711717711171171717117
// Main Function

HIHITTITIIIIILII I I LI i il iiiiieeiieliieieeiieiy

int main(int argc, char* argv[])

{

CGraph graph;

char strName [40] ;
float fBeta = 0.0;
float fBackStep = 0.5f;
int nlter, ij;

int nSize;

int nStop = FALSE;

int nFound;

int bDF = FALSE;

int bAddNoise = FALSE;
int bKick = FALSE;
float £N = 0.
float f£K = 0.

if(argec < 2)
{
printf("Usage: sol name [dfmax] [a noise_val]");
printf(" [k kick]\n");
return 1;

}

strcpy(strName, argv[il);

if(argec > 2)
{
for(i = 2; i < argc; i++)

{
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switch(argv[i] [0])
{
case ’d’:
bDF = TRUE;
break;

case ’a’:
bAddNoise = TRUE;
N = atof(argv[i+1]);
it+;
break;

case ’k’:
bKick = TRUE;
fK = atof(argv[i+1]);
i++;

break;

default:
printf("Usage: sol name [dfmax] [a noise_vall");
printf(" [k kick]\n");
return 1;
}
}
}

printf("Solving %s\n", strName);
if(graph.Initialise_Binary_DIMACS(strName))

printf("Loaded\n");

}
else
{
printf("Failed to load\n");
return 1;
};

nSize = graph.GetSize();

if (bAddNoise == TRUE) graph.AddNoise(£fN);
if(bKick == TRUE) graph.Kick(fK);

graph.InitPrior(fBeta);
for(nIter = 0; nIter < 10000; nIter++)
{
printf("%i %f\n", nIter, fBeta);

graph.CalculatePosteriorProb();
if ((nFound = graph.FoundAnswer()) && nIter > 3)
{

if(nFound == 1) nStop = TRUE;
else if(nFound == 2)
{
fBeta -= fBackStep;
fBackStep += 0.5f;
if(fBeta < 0.0f) nStop = TRUE;
T
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};
if (nStop == TRUE) break;
fBeta += 0.1f;

graph.Dolteration(fBeta);
};

if (nFound == 2)
{
printf("Found alternating solution\n");
printf("Doing DFMax\n");
if (bDF == TRUE)
{
graph .DoDFMax (1) ;
};
g = &graph;
printf("Doing GA\n");
graph.DoGA(50, 400, 0.001f, 0.6f, Objective);
printf("Vertex\t\tGenetic\t\tDfmax\n");
for(i = 1; i <= nSize; i++)
{
printf("\n%i\t\t%i", i, graph.GetGABestSet(i));
if (bDF == TRUE) printf("\t\t%i", graph.GetBestSet(i));
};
printf("\n");
return 0;

}

if (bDF == TRUE)

{
printf("Doing Dfmax\n");
graph.DoDFMax (1) ;
};
printf("Found at beta: %f\n", fBeta);
printf("Doing GA\n");
g = &graph;
graph.DoGA(50, 400, 0.001f, 0.6, Objective);
printf("GA Complete\n");
graph.SetResult();

printf("Vertex\t\tResult\t\tWeight\t\tPrediction\tGenetic\t\tDfmax\n");

for(i = 1; i <= nSize; i++)
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{
printf ("\n%i\t\t%£\t%£f\t%i\t\t%i", i, graph.GetPosterior(i),
graph.GetWeight (i),
graph.GetResult(i),
graph.GetGABestSet (i));
if (bDF == TRUE) printf("\t\t%i", graph.GetBestSet(i));
};

if (graph.IsIndSet() == FALSE)

printf("\nNot an independant set");
graph.Prune();
printf("Pruned: ");
for(i = 1; i <= nSize; i++)
printf("%i ", graph.GetResult(i));
};

printf("\n");

return 0;

}

float Objective(GAGenome& gen)
{

int i, j;
GA1DBinaryStringGenome & genome = (GA1DBinaryStringGenome &)gen;

float score=0.0f;
for(i=0; i<g->GetSize(); i++)
{
if (genome.gene(i) == 1) score += 1.0f;

}

for(i = 0; i<(g->GetSize()-1); i++)
for(j = i+l; j<g->GetSize(); j++)
{
if(g->GetEdge(i+1, j+1) == TRUE && genome.gene(i) ==
&& genome.gene(j) == 1)
{
return 0.0f;
};
};

return score;

}
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