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Introduction

Decision theory is trivial, apart from computational details.

You have a choice of various actions, a. The world may be in one of many
states x; which one occurs may be influenced by your action. The world’s
state is described by a probability distribution P (x|a). Finally, there is a
utility function U(x, a) which specifies the payoff you receive when the world
is in state x and you chose action a.

The task of decision theory is to select the action that maximizes the
expected utility,

E [U |a] =

∫

dKx U(x, a)P (x|a). (1)

That’s all. The computational problem is to maximize E [U |a] over a. [Pes-
simists may prefer to define a loss function L instead of a utility function U
and minimize the expected loss.]

Is there anything more to be said about decision theory?

Well, in a real problem, the choice of an appropriate utility function may
be quite difficult. Furthermore, when a sequence of actions is to be taken, with
each action providing information about x, we have to take into account the
affect that this anticipated information may have on our subsequent actions.
The resulting mixture of forward probability and inverse probability compu-
tations in a decision problem is distinctive. In a realistic problem such as
playing a board game, the tree of possible cogitations and actions that must
be considered becomes enormous, and ‘doing the right thing’ is not simple
(Russell and Wefald, 1991; Baum and Smith, 1993; Baum and Smith, 1997)
because the expected utility of an action cannot be computed exactly.

Perhaps a simple example is worth exploring.

Rational prospecting

Suppose you have the task of choosing the site for a Tanzanite mine. Your Tanzanite is a mineral found in
East Africa.final action will be to select the site from a list of N sites. The nth site has

a net value called the return xn which is initially unknown, and will be found
out exactly only after site n has been chosen. [xn equals the revenue earned
from selling the Tanzanite from that site, minus the costs of buying the site,
paying the staff, and so forth.] At the outset, the return xn has a probability
distribution P (xn), based on the information already available.

Before you take your final action you have the opportunity to do some
prospecting. Prospecting at the nth site has a cost cn and yields data dn
which reduce the uncertainty about xn. [We’ll assume that the returns of
the N sites are unrelated to each other, and that prospecting at one site only
yields information about that site and doesn’t affect the return from that site.]

Your decision problem is:
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given the initial probability distributions P (x1), P (x2), . . .P (xN ),
first, decide whether to prospect, and at which sites; then choose
which site to mine.

For simplicity, let’s make everything in the problem Gaussian and focus The notation
P (y) = Normal(y;µ, σ2) in-
dicates that y has Gaussian
distribution with mean µ and
variance σ2.

on the question of whether to prospect once or not. We’ll assume our utility
function is linear in xn; we wish to maximize our expected return. The utility
function is

U = xna , (2)

if no prospecting is done, where na is the chosen ‘action’ site, and if prospecting
is done the utility is

U = −cnp + xna , (3)

where np is the site at which prospecting took place.
The prior distribution of the return of site n is

P (xn) = Normal(xn;µn, σ
2

n). (4)

If you prospect at site n, the datum dn is a noisy version of xn:

P (dn|xn) = Normal(dn;xn, σ
2). (5)

Exercise 1: Given these assumptions, show that the prior probability distribu-
tion of dn is

P (dn) = Normal(dn;µn, σ
2+σ2

n) (6)

[mnemonic: when independent variables add, variances add], and that
the posterior distribution of xn given dn is

P (xn|dn) = Normal
(

xn;µ
′

n, σ
2

n

′
)

(7)

where

µ′n =
dn/σ

2 + µn/σ
2
n

1/σ2 + 1/σ2
n

and
1

σ2
n
′
=
1

σ2
+
1

σ2
n

(8)

[mnemonic: when Gaussians multiply, precisions add].

To start with let’s evaluate the expected utility if we do no prospecting (i.e.,
choose the site immediately); then we’ll evaluate the expected utility if we first
prospect at one site and then make our choice. From these two results we will
be able to decide whether to prospect once or zero times, and, if we prospect
once, at which site.
So, first we consider the expected utility without any prospecting.

Exercise 2: Show that the optimal action, assuming no prospecting, is to select
the site with biggest mean

na = argmax
n

µn, (9)

and the expected utility of this action is

E [U |optimal n] = max
n

µn. (10)

[If your intuition says ‘surely the optimal decision should take into ac-
count the different uncertainties σn too?’, the answer to this question is
‘reasonable – if so, then the utility function should be nonlinear in x’.]
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Now the exciting bit. Should we prospect? Once we have prospected at
site np, we will choose the site using the descision rule (9) with the value of
mean µnp replaced by the updated value µ

′
n given by (8). What makes the

problem exciting is that we don’t yet know the value of dn, so we don’t know
what our action na will be; indeed the whole value of doing the prospecting
comes from the fact that the outcome dn may alter the action from the one
that we would have taken in the abscence of the experimental information.

From the expression for the new mean in terms of dn (8), and the known
variance of dn (6) we can compute the probability distribution of the key
quantity, µ′n, and can work out the expected utility by integrating over all
possible outcomes and their associated actions.

Exercise 3: Show that the probability distribution of the new mean µ′n (8) is
Gaussian with mean µn and variance

s2 ≡ σ2

n

σ2
n

σ2 + σ2
n

. (11)

Consider prospecting at site n. Let the biggest mean of the other sites be
µ1. When we obtain the new value of the mean, µ

′
n, we will choose site n and

get an expected return of µ′n if µ
′
n > µ1, and we will choose site 1 and get an

expected return of µ1 if µ
′
n < µ1.

So the expected utility of prospecting at site n, then picking the best site,
is

E [U |prospect at n] = −cn + P (µ′n < µ1)µ1 +

∫

∞

µ1

dµ′n µ
′

nNormal(µ
′

n;µn, s
2).

(12)

The difference in utility between prospecting and not prospecting is a quan-
tity of interest, and it depends on what we would have done without prospect-
ing. If µ1 is not only the biggest of the rest, but is also bigger than µn, then
we would have chosen µ1; if µn, we would have chosen n.

E [U |no prospecting] =

{

−µ1 if µ1 ≥ µn
−µn if µ1 ≤ µn

(13)

So

E [U |prospect at n]− E [U |no prospecting]

=















−cn +

∫

∞

µ1

dµ′n (µ
′

n − µ1)Normal(µ
′

n;µn, s
2) if µ1 ≥ µn

−cn +

∫ µ1

−∞

dµ′n (µ1 − µ′n)Normal(µ
′

n;µn, s
2) if µ1 ≤ µn.

(14)

We can plot the change in expected utility due to prospecting (omitting
cn) as a function of (horizontal axis) the difference (µn−µ1) and (vertical axis)
the initial standard deviation σn. In the figure the noise variance is σ

2 = 1.
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Figure 1: The gain in
expected utility due to
prospecting. The con-
tours are equally spaced
from 0.1 to 1.2 in steps
of 0.1. To decide whether
it is worth prospecting at
site n, find the contour
equal to cn; all points
[(µn−µ1), σn] above that
contour are worthwhile.
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