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Abstract

I examine two approximate methods for computational implementation of Bayesian
hierarchical models, that is, models which include unknown hyperparameters such as
regularization constants and noise levels. In the ‘evidence framework’ the model param-
eters are integrated over, and the resulting evidence is mazimized over the hyperparam-
eters. The optimized hyperparameters are used to define a Gaussian approximation
to the posterior distribution. In the alternative ‘M AP’ method, the true posterior
probability is found by integrating over the hyperparameters. The true posterior is
then mazimized over the model parameters, and a Gaussian approximation is made.
The similarities of the two approaches, and their relative merits, are discussed, and
comparisons are made with the ideal hierarchical Bayesian solution.

In moderately ill-posed problems, integration over hyperparameters yields a proba-
bility distribution with a skew peak which causes significant biases to arise in the MAP
method. In contrast, the evidence framework is shown to introduce negligible pre-
dictive error, under straightforward conditions. General lessons are drawn concerning
inference in many dimensions.

1 The overfitting problem and hyperparameters in neu-
ral networks

Feedforward neural networks are often trained to solve regression and classification problems
using algorithms that minimize an error function, a measure of goodness of fit to the training
data (Rumelhart et al. 1986). If nothing is done to control the complexity of the resulting
neural network, an inevitable consequence of error—minimization will be overfitting — the
neural network will learn a function which fits spurious details and noise in the data.



There are several approaches to the overfitting problem in neural networks. A crude tech-
nique known as ‘early stopping’ attempts to track a measure of generalization performance
during optimization and halt the learning algorithm at the point where this generalization
error appears to start to increase. However, most generalization measures are themselves
noisy, so the turning point is not easy to identify. Furthermore, the outcome of early stop-
ping will depend on the details of the optimizer chosen to perform the minimization and the
initial conditions. And early stopping is unable to independently control multiple dimen-
sions of complexity; if, as seems reasonable in the case of large models, there is more than
one degree of freedom in the model’s ‘complexity’, early stopping would seem too crude a
method for complexity control, since it controls complexity using only one degree of freedom
— the simulation time.

A more principled approach to overfitting, and one that is less implementation—dependent,
is to change the objective function by adding one or more regularizers that penalize com-
plex functions. There are various regularizers, the simplest and most popular being ‘weight
decay’ (Hinton and Sejnowski 1986) (also known as ‘ridge regression’). The regularizer in
this case is aEw where Ey is half the sum of the squares of the weights {w;} in the neural
network,

1
By =3 ;wf (1)

The motivation for this regularizer is that functions with a complex dependence on the
inputs of a network require larger weights than simple functions, so this regularizer penalizes
the more complex functions and favours smooth ones. This is known as a weight decay
regularizer because its derivative with respect to w; is d(aEw)/0w; = aw;, a term which
under gradient descent causes the weights to decay exponentially to zero with a ‘weight
decay rate’ of a. When such a regularizer is used the overfitting problem reappears as
the task of setting this complexity control ‘hyperparameter’ . Too large a value of a will
cause the interpolant to be too smooth so that genuine structure is neglected. Too small
a value of a will also give poor generalization because of overfitting. Other regularization
schemes have been suggested (Weigend et al. 1991), and the same problem of controlling
the hyperparameters applies to those models too.

One way of describing the overfitting problem is to view the neural network as an approx-
imation or estimation tool and describe the control of complexity as a trade—off between
bias and variance (see Bishop (1995) for a review). This might be termed the sampling
theory approach to the problem.

This paper is concerned with an alternative Bayesian viewpoint of neural network learn-
ing (MacKay 1991; Buntine and Weigend 1991; MacKay 1992c; Neal 1993a; Ripley 1996;
Neal 1996) in which the data error is interpreted as defining a likelihood function, and the
regularizer corresponds to a prior probability distribution over the weights. From this view-
point the question of what value a should take can be thought of as a model comparison



question, where the models being compared differ by assigning different priors to the param-
eters. In (MacKay 1991; MacKay 1992c) it was shown that it made theoretical sense, and
could be practically beneficial, to use multiple hyperparameters {a.}, each one controlling a
different aspect of the prior probability distribution. Methods for controlling these multiple
hyperparameters were developed by MacKay (1991) using Gaussian approximations and by
Neal (1993a) using Markov chain Monte Carlo methods. The approach to implementing
Bayesian neural networks suggested by Buntine and Weigend (1991) was subtly different in
its treatment of the hyperparameters. As in MacKay’s (1991) approach, the use of Gaus-
sian approximations was suggested, but the hyperparameters were ‘integrated out’ of the
problem analytically before the Gaussian approximation.

In this paper I compare the approximate strategies of MacKay (1991) and Buntine
and Weigend (1991) for handling hyperparameters, assuming a Bayesian approach to neu-
ral networks. This comparison is also relevant to other ill-posed problems such as image
reconstruction (Gull 1989). For simplicity I will concentrate on the case of a single hyper-
parameter «, and I will assume that the prior is Gaussian over w, and that the likelihood
function is also a Gaussian function of w. I believe that the insights obtained concerning the
differences between the approximate methods also apply to models that have more complex
likelihood functions and that have priors with multiple hyperparameters.

2 The model studied

In inference problems, a Bayesian model ‘H commonly takes the form:
P(D,w,a,BH) = P(D|w, 8, H)P(w|a, H)P(a, B|H), (2)

where D is the data, w is the parameter vector, 3 defines a noise variance o2 = 1/4,
and « is a regularization constant. In a regression problem, for example, D might be a
set of data points, {t}, at given locations {x}, and the vector w might parameterize a
function f(x;w). The model #H states that for some w, the dependent variables {t} arise
from the addition of noise to {f(x;w)}; the likelihood function P(D|w,3,H) describes
the assumed noise process, parameterized by a noise level 1/8; the prior probability of the
parameters P(w|a, H) embodies assumptions about the spatial correlations and smoothness
that the true function is expected to have, parameterized by a regularization constant a.
The variables « and (8 are known as hyperparameters. Problems for which models can
be written in the form (2) include linear interpolation with a fixed basis set (Gull 1988;
MacKay 1992a), nonlinear regression with a neural network (MacKay 1992c¢), nonlinear
classification (MacKay 1992b), and image deconvolution (Gull 1989).

In the simplest case (linear models, Gaussian noise), the first factor in (2), the likelihood,



can be written in terms of a quadratic function of w, Ep(w):

P(D|W7/3a H) = exp(—ﬁED(W)), (3)

1
Zp(B)
where Zp () is a normalization constant with no w—dependence. In the case of ‘ill-posed’
problems, the hessian VV Ep is ill-conditioned — some of its eigenvalues are very small, so
that the maximum likelihood parameters depend undesirably on the noise in the data. The
model is ‘regularized’ by the second factor in (2), the prior, which in the simplest case is a
spherical Gaussian:

1

P(w|a,H) = exp(—azw'w). (4)

1
Zw(a)
where Zw (a) = [ d*w exp(—aw"w/2), with k denoting the dimensionality of the parameter
vector w. The regularization constant a defines the variance o2, = 1/a of the components
w; of w under the prior. This simple linear model will be studied in this paper because it
provides a convenient test—bed for comparing approximate inference methods. If a method
behaves pathologically in this simple case, how can we expect it to behave well when applied
to more complex nonlinear models?

Much interest has centred on the question, for models like the one defined in equations
(3—4), of how the constants @ and 3 — or the ratio a/ 8 — should be set, and Gull (1989) has
derived an appealing Bayesian prescription for these constants (see also MacKay (1992a) for
areview). This ‘evidence framework’ integrates over the parameters w to give the ‘evidence’
P(D|a, 8,H). The evidence is then mazimized over the regularization constant o and noise
level B. A Gaussian approximation is then made with the hyperparameters fixed to their
optimized values. This relates closely to the ‘generalized maximum likelihood’ or ‘MLIT’
method in statistics (Wahba 1975). This method can be applied to nonlinear models by
making appropriate local linearizations (so that the integral over the parameters is made
approximately rather than exactly) and has been used successfully in image reconstruction
(Gull 1989; Weir 1991) and in neural networks (MacKay 1992c; Thodberg 1996; MacKay
1996).

An alternative procedure for computing inferences under the same Bayesian model has
been suggested by Buntine and Weigend (1991), Strauss et al. (1993) and Wolpert (1993).
In this approach, one integrates over the regularization constant a first to obtain the ‘true
prior’, and over the noise level 8 to obtain the ‘true likelihood’; then mazimizes the ‘true
posterior’ (which is proportional to the product of the true prior and the true likelihood)
over the parameters w. A Gaussian approximation is then made around this true probability
density maximum. I will call this the ‘MAP’ method (for mazimum a posteriori) although
this use of the term ‘MAP’ may not coincide precisely with its general usage. In the
MAP method, the integrations over a can typically be performed exactly, and the posterior
probability density maximum is found without any approximations being made. The MAP



method is an approximation in that the Gaussian fitted at the posterior maximum is an
approximation to the true posterior distribution.

The purpose of this paper is to examine the choice between these two Gaussian ap-
proximations, both of which might be used to approximate predictive inference for high—
dimensional problems. Of course the ideal Bayesian approach would be to obtain predictions
by integrating out all the parameters and hyperparameters, and this would certainly be pre-
ferred. The assumption here is that this is a challenging integral to perform, and that we are
only able to analytically integrate over either the parameters (for fixed hyperparameters),
as in the evidence framework, or over the hyperparameters (for fixed parameters) as in the
MAP method.

It is assumed that predictive distributions are of interest, rather than point estimates.
Estimation will only appear as a computational stepping stone in the process of approxi-
mating a predictive distribution. I concentrate on the simplest case of the linear model with
Gaussian noise, but the insights obtained are expected to apply to more general nonlinear
models and to models with multiple hyperparameters. When a nonlinear model has multiple
local optima, one can approximate the posterior by a sum of Gaussians, one fitted at each
optimum. There is then an analogous choice between either (a) optimizing a separately at
each local optimum in w and using a Gaussian approximation conditioned on a (MacKay
1992c¢); or (b) fitting multiple Gaussians to local maxima of the true posterior with the
hyperparameter « integrated out. The results of this paper shed light on this choice.

We will assume for simplicity that the noise level 8 is known precisely, so that only the
regularization constant « is respectively optimized or integrated over. Comments about «
can apply equally well to .

3 Pictorial comparison of the two methods

The two approximations are illustrated graphically for a simple two—parameter problem in
figures 1 and 2. There are two unknown parameters wq,ws, with a prior distribution that
is Gaussian with mean zero and variance 1/,

o (6]
Py, wala) = — exp (~Z(w? +u3)) (5)

where a is an unknown hyperparameter whose prior distribution (figure 1(a)) is uniform
over log a from a = 0.01 to a = 100. This prior expresses a belief that wy and ws are likely
to be similar in magnitude, and that their magnitudes might be about 0.1, 1.0, or 10. There
are two data points d; and ds which differ from w; and w2 by additive Gaussian noise of
known variance 02 = 0.5 and o2 = 2 respectively.

1 D _(d1 - ’11)1)2 + (dz - ’UJ2)2 ) (6)
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Figure 1: Comparison of the evidence approximation and the MAP approximation for a
two—dimensional problem with data d = (2.2,2.8).



(c) Likelihood function (d) True posterior
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Figure 2: Comparison of the evidence approximation and the MAP approximation when
d = (1.75,2.2).



(Or equivalently, there could be more than two data points, all having Gaussian distributions
with equal variance, for example, if w; is measured independently sixteen times, and w- is
measured once, with the measurements having variance o2 = 2.)

The ‘true prior’,

P(wi,ws) = [ da Plws,usla)P(a), 7
is shown in figure 1(b). It is obtained by integrating the prior conditional on a (equation
(5)) with respect to the prior on «,

1/log %% a € (0.01,100)

0 otherwise.

P(loga) = { (8)
We are interested in the posterior distribution of w; and wy conditional on {d;,ds}; the
‘true posterior’ (as distinct from the posterior distribution conditional on some value of a)

is:
P(wl,WQldl,dQ) ocP(dl,d2|w1,w2)P(w1,'w2). (9)

3.1 Let the data be {d;,d>} = {2.2,2.8}

The likelihood function for the case {di,d2} = {2.2,2.8} is shown in figure 1(c). The ‘true
posterior’ (which is proportional to the product of the likelihood and the prior) is shown in
figure 1(d). At this point we notice that the true posterior has two maxima — one associated
with a large peak that encompasses the maximum likelihood parameters, and one close to
the origin which is associated with a very narrow peak. The ‘alpha trajectory’ is shown in
figure 1(e). This is the path that is followed by the maximum of the posterior conditional on
a, P(w|d, a), as a is varied from a large value (which puts the posterior maximum near the
origin) to a small value (which puts it close to the maximum likelihood value, w = wy,.).
We will see in section 4.4 that the maxima and saddle points of the true posterior happen
to lie exactly on the alpha trajectory. The posterior probability of a, which is maximized in
the evidence framework, is shown in figure 1(f). The evidence approximation, P(w|d, ayp),
is shown in figure 1(g). The Gaussian approximations found by the MAP method (there
are two, because the true posterior has two maxima) are shown in figure 1(h).

In this first example, it is not clear if one approximation is superior to the other. We
note that whereas the true posterior (figure 1(d)) is multimodal, the posterior probability
of a is unimodal in this case, and the posterior probability of w given a,p is also unimodal.

Let us now study the situation for a slightly different data set.

3.2 Let the data be {d;,d>} = {1.75,2.2}

The likelihood function for the case {di,d>} = {1.75,2.2} is shown in figure 2(c). The true
posterior is shown in figure 2(d). In this case, unlike figure 1(d), the true posterior has only



one maximum. Both the maximum formerly associated with the large peak and the saddle
point between the maxima have vanished. The sole maximum of the true posterior is a
sharp peak close to the origin. The posterior probability of « is shown in figure 2(f). The
evidence approximation P(w|d, ayp), is shown in figure 2(g). The Gaussian approximation
found by the MAP method is shown in figure 2(h).

In this case, it seems that the MAP method is being led astray by the tall but narrow and
skew peak of the probability density. Although the density is maximized at this peak, most
of the posterior probability mass is elsewhere. The Gaussian fitted by the method suggested
by Buntine and Weigend (1991), Strauss et al. (1993) and Wolpert (1993) appears to be
a poor representation of the true posterior. The evidence approximation is not a perfect
approximation either — it fails to capture the narrow peak where the true posterior is
maximized; but it appears to robustly capture most of the posterior probability mass.

Of course, we cannot judge between two approximate methods on the basis of a toy
problem alone. The rest of this paper aims to fill out the picture, with an emphasis on what
is expected to happen in high—dimensional problems in which there are ill-determined as well
as well-determined parameters. What we will see is that figure 2 gives a good intuition for
what happens in high dimensions. We will show that the true posterior distribution usually
has a skew peak if there are ill-determined parameters, and the true posterior density’s
maximum is usually unrepresentative of the true posterior density.

4 The alternative methods in detail

Given the Bayesian model defined in (2), we might be interested in the following inferences.
Problem A: Infer the parameters, i.e., obtain a compact representation of P(w|D,#) and
the marginal distributions P(w;|D,H).

Problem B: Infer the relative model plausibility, which requires the ‘evidence’ P(D|H).
Problem C: Make predictions, i.e., obtain some representation of P(Dy|D,#H), where Da,
in the simplest case, is a single new datum.

4.1 The ideal approach

Ideally, if we were able to do all the necessary integrals, we would just generate the probabil-
ity distributions P(w|D, H), P(D|H), and P(D»|D,H) by direct integration over everything
that we are not concerned with. The pioneering work of Box and Tiao (1973) used this ap-
proach to develop Bayesian robust statistics.

For real problems of interest, however, such exact integration methods are seldom avail-
able. A partial solution can still be obtained by using Monte Carlo methods to simulate
the full probability distribution (see Neal (1993b) for an excellent review of Monte Carlo



methods and Neal (1996) for the application of these methods to hierarchical models).
Thus one can obtain (problem A) a set of samples {w} which represent the posterior
P(w|D,H), and (problem C) a set of samples {D»} which represent the predictive dis-
tribution P(Dz|D,?H). Unfortunately, the evaluation of the evidence P(D|H) with Monte
Carlo methods (problem B) is a difficult undertaking. Recent developments (Neal 1993a;
Skilling 1993) now make it possible to use gradient and curvature information so as to sam-
ple high dimensional spaces more effectively, even for highly non—Gaussian distributions.
Let us come down from these clouds however, and turn attention to the two deterministic
approximations under study.

4.2 The evidence framework

The evidence framework divides our inferences into distinct ‘levels of inference’:
Level 1: Infer the parameters w for a given value of a:

P(D|w,a,H)P(w|a,H)

Level 2: Infer a: P(Dla, H)P(alH)
Q, «a
P(a|D,H) = P(D[H) . (11)
Level 3: Compare models:
P(#H|D) < P(D|H)P(H). (12)

There is a pattern in these three applications of Bayes’ rule: at each of the higher levels 2
and 3, the data—dependent factor (e.g. in level 2, P(D|a,H)) is the normalizing constant
(the ‘evidence’) from the preceding level of inference.

The inference problems listed at the beginning of this section are solved approximately
using the following procedure.

e Thelevel 1 inference is approximated by making a quadratic expansion of log P(D|w, a, H)P(w|a, H)
around a maximum of P(w|D, a,); this expansion defines a Gaussian approximation
to the posterior. The evidence P(D|a,H) is estimated by evaluating the appropriate
determinant. For linear models the Gaussian approximation is exact.

¢ By maximizing the evidence P(D|a,H) at level 2, we find the most probable value of
the regularization constant, aye, and by Taylor-expanding log P(D|a, H) with respect
to log @, we obtain error bars on log a, 0144 «|p- (Because a is a positive scale variable,
it is natural to represent its uncertainty on a log scale.)

e The value of oy is substituted at level 1. This defines a probability distribution
P(w|D, axp,H) which is intended to be a good approximation (in a sense we will
clarify later) to the posterior P(w|D,H). The solution offered for problem A is a

10



Gaussian distribution around the maximum of this distribution, Wyp|a,,, With co-
variance matrix X defined by

>t = —VVlog P(W|D, ape, H). (13)
Marginals for the components of w are easily obtained from this distribution.

e The evidence for model H (problem B) is estimated using Laplace’s approximation:
P(D|H) ~ P(D|owe, H)P(log ame|H) V27 0165 o|D- (14)

e Problem C: The predictive distribution P(D2|D,?H) is approximated by using the
posterior distribution with o= ayp:

P(Ds|D, o, H) = /dkw P(Ds|w, H)P(W|D, one, H), (15)

where k is the dimensionality of the parameter vector w. For a locally linear model
with Gaussian noise, both the distributions inside the integral are Gaussian, and this
integral is straightforward to perform.

As reviewed in MacKay (1992a), the most probable value of « satisfies a simple implicit
equation,
1w
Onvp B Y

where w; are the components of the vector Wyp|q,, and 7y is the number of well-determined

(16)

parameters, which can be expressed in terms of the eigenvalues A\, of the matrix BVV Ep(w):

k

A
'y:k—aTraceE:Z 2
1

Ao + 0

(17)

This quantity is a number between 0 and k. Recalling that a can be interpreted as the
variance o2 of the distribution from which the parameters w; come, we see that equation
(16) corresponds to an intuitive prescription for a variance estimator. The idea is that we are
estimating the variance of the distribution of w; from only v well-determined parameters, the
other (k—-) having been set roughly to zero by the regularizer and therefore not contributing
to the sum in the numerator.

In principle, there may be multiple optima in «, but this is not the typical case for
a model well matched to the data. Under general conditions, the error bars on loga are
Tlog a|D V2/7 (MacKay 1992a) (see section 8). Thus log a is well determined by the data
ify> 1.

The central computation can be summarised thus:

11



Evidence approximation: find a self-consistent solution {Wyp|ap» Qe } Such
that Wyp|ay, maximizes P(w|D,awp, 1) and aye satisfies equation (16).

If one is concerned that there may be multiple optima in «, then one may explicitly evaluate
the evidence as a function of a.

Justification for the evidence approximation

The central approximation in this scheme can be stated as follows: when we integrate out a
parameter «, the effect for most purposes is to estimate the parameter from the data, and
then constrain the parameter to that value (Box and Tiao 1973; Bretthorst 1988). When we
predict an observable D-, the predictive distribution is dominated by the value a = ayp.
In symbols,

PumDﬁo:/Pwﬂamﬂﬂm%mpﬁom%a:P@Mpﬂmﬂo. (18)

This approximation is accurate (in a sense that will be made more precise in section 8) as
long as P(D;|D,a,H) is insensitive to changes in loga on a scale of 044 o|p, S0 that the
distribution P(loga|D,#H) is effectively a delta function.

This is a well-established idea. A similar equivalence of two probability distributions
arises in statistical thermodynamics. The ‘canonical ensemble’ over all states r of a system,

P(r|B8) = exp(-BE,)/Z, (19)

describes equilibrium with a heat bath at temperature 1/8. Although the energy of the
system is not fixed, the probability distribution of the energy is usually sharply peaked
about the mean energy E. The corresponding ‘microcanonical ensemble’ describes the
system when it is isolated and has fixed energy:

1/Q E, € [E+6E/2

20
0 otherwise (20)

P(r|[E=E) = {
Under these two distributions, a particular microstate r may have numerical probabili-
ties that are completely different. For example, the most probable microstate under the
canonical ensemble is always the ground state, for any temperature 1/8 > 0; whereas its
probability under the microcanonical ensemble is zero. But if the system has a large num-
ber of degrees of freedom, it is well known (Reif 1965) that for most macroscopic purposes,
the two distributions are indistinguishable, because most of the probability mass of the
canonical ensemble is concentrated in the states in a small interval around E.
The same reasoning justifies the evidence approximation for ill-posed problems, with
particular values of w corresponding to microstates. If the number of well-determined
parameters is large, then «, like the energy above, is well determined. This does not imply

12



that the two densities P(w|D,H) and P(w|D, ayp, H) are numerically close in value, but we
have no interest in the probability of the high dimensional vector w. For practical purposes,
we only care about distributions of low—dimensional quantities (e.g., an individual parameter
w; or a new datum); what matters, and what is asserted here, is that when we project
the distributions down in order to predict low—dimensional quantities, the approximating
distribution P(w|D, ayp,H) puts most of its probability mass in the right place. A more
precise discussion of this approximation is given in section 8.

4.3 The MAP method

The alternative procedure studied in this paper is first to integrate out « to obtain the true
prior:

P(w|H) = /da P(w|a, H)P(a|H). (21)
We can then write down the true posterior directly (except for its normalizing constant):
P(w|D,H) < P(D|w,H)P(w|H). (22)

This posterior can be maximized to find the MAP parameters, wyr. How does this relate
to the desired inferences listed at the head of this section? Not all authors describe how
they intend the true posterior to be used in practical problems (e.g., Wolpert (1993)); here
I describe a method based on the suggestions of Buntine and Weigend (1991).

Problem A: The posterior distribution P(w|D,#) is approximated by a Gaussian dis-
tribution, fitted around the most probable parameters, wyp; to find the Hessian of the log
posterior, one needs the Hessian of the log prior, derived below. [A simple evaluation of the
factors on the right hand side of (22) is not a satisfactory solution of problem A, since (a) the
normalizing constant is missing; (b) even if the right hand side of (22) were normalized, the
ability to evaluate the local value of this density would be of little use as a summary of the
distribution in the high—dimensional space; for example, the marginal distribution over one
parameter w; can only be obtained from (22) by somehow performing the marginalization
integral over the other parameters.|

Problem B: An estimate of the evidence is obtained from the determinant of the covari-
ance matrix of this Gaussian distribution.

Problem C: The parameters wyp with error bars are used to generate predictions as in
(15).

A simple example will illustrate that this approach actually gives results qualitatively
similar to the evidence framework. Let us consider the weight decay prior. If we apply the
improper prior over a, Pimp(loga) = 1, and evaluate the true prior over the parameters w,

13



we obtain a particularly simple result:

o0 e_aZ:;lw?/z dl 1
A O SR LE

The derivative of the true log prior with respect to w is —(k/ Y, w?)w. This ‘weight decay’

Prmp(wW[H) = / (23)

a=0 Zw (a)

term can be directly viewed in terms of an ‘effective o/,

1 w?
- i (24)
Qe (W) k
Any maximum of the true posterior P(w|D,H) is therefore also a maximum of the condi-
tional posterior P(w|D, a, H), with « set to ce. The similarity of equation (24) to equation
(16) of the evidence framework is clear. We can therefore describe the MAP method thus:

MAP method (improper prior over «): find a self—consistent solution {Wyp, cesr }
such that wyp maximizes P(w|D, aeg, M) and aeg satisfies equation (24).

This procedure is suggested in (MacKay 1992c) as a ‘quick and dirty’ approximation to the
evidence framework. What the above result shows is that it is also an exact method for
locating the weights that maximize the true posterior probability density.

4.4 The effective « and the curvature resulting from a general prior
over «

We have just established that, when the improper prior over a (23) is used, the MAP
solution lies exactly on the ‘alpha trajectory’ — the graph of wy;|, — for a particular value
of @ = aes. This result still holds when a proper prior over « is used to define the true
prior over w (21). The derivative of log P(w|H) with respect to w is

_ [ da (—aw) exp(—aw?/2)/ Zw(a) P(a|H)

8% log P(w|H) = Plw[H) = —Qer (W)W (25)

where the effective a(w) is:

et (W) = /da a Pla|w,H), (26)
e P(w|a, H)P(alH)
w|a, @
P(a|w,H) = Piw|H) . (27)
So at any stationary point of the true posterior, it must be the case that
0
—ﬂa—wED(w) — Qe (W)W =0, (28)

1f a uniform prior over a from 0 to oo is used (instead of a uniform prior over log ) then the exponent
in equation (23) changes from k/2 to (k/2 + 1).

14



which shows that all maxima, minima and saddle points of the true posterior lie on the
alpha trajectory. In summary, optima wy found by the MAP method can be described
thus:

MAP method (proper prior over a): find the self—consistent solution {wyp, Qe }
such that wy, maximizes P(w|D, e, M) and aeq satisfies equation (26).

The curvature of the true prior over w is needed for evaluation of the error bars on

w in the MAP method. The true posterior probability maximum wy; coincides with the

maximum of the distribution P(w|D, aes, ), but the curvature of the true log posterior is

not equal to the curvature of log P(w|D, aesr, H). By direct differentiation of the true log
prior (21), we find:

—VVlog P(W|H) = el — 02 (W)ww', (29)

where aeg(w) is defined in (26), and the effective variance of « is:

02 (w) = 2P(W) — ae(w)? = /da o? P(afw,H) — (/ daa P(a|w,7—£)>2 .0

This is an intuitive result: if a were fixed to aef, then the curvature would just be the first
term in (29), aesI. The fact that « is uncertain depletes the curvature in the radial direction
w = w/|w|. To obtain the Hessian for the MAP method’s Gaussian approximation, the
curvature of the log prior in equation (29) would be added to the curvature of the log
likelihood log P(D|w,H).

4.5 Condition satisfied by typical samples

The conditions (16) and (24), satisfied by the optima (aue, Wyp|aye ) a0d (Qeff, Wip) TESpeC-
tively, are complemented by an additional result concerning typical samples from posterior
distributions conditioned on a. The maximum wy;|, of a Gaussian distribution is not typ-
ical of that distribution: the maximum has an atypically small value of w'w, because, as
discussed in section 6, nearly all of the mass of a Gaussian is in a shell at some distance
surrounding the maximum.

Consider samples {w} from the Gaussian posterior distribution with « fixed to ayp,
P(w|D, ane,M). The average value of w'w = Y, w? for these samples satisfies:

k
Op = 75—
" (Ez w?)ID,aMP
Proof: The deviation AW = W — Wyp|q,,, i Gaussian distributed with AwAw™ = 3. So

e (3 W2 Dyange = Qe (Wrp|ange + AW) T (Wap|ayge +AW) = aMpwaP‘aMP + aysTraceX =
k, using equations (16) and (17).

(31)

Thus a typical sample from the evidence approximation prefers just the same value of
a as does the evidence P(D|a, #H), in the sense that if one were to draw samples {w} from
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P(w|D, app, H) and then estimate a so as to maximize the probability of those samples, «
would be set to aue.

5 Pros and cons

The algorithms for finding the evidence framework’s We | aup and the MAP method’s wyp
have been seen to be very similar. Is there any significant distinction to be drawn between
these two aproaches?

The MAP method has the advantage that it involves no approximations until after we
have found the MAP parameters wyp; in contrast, the evidence framework approximates
an integral over a.

In the MAP method the integrals over a and 3 need only be performed once and can
then be used repeatedly for different data sets; in the evidence framework, each new data
set has to receive individual attention, with a sequence of (Gaussian) integrations being
performed each time o and 8 are optimized.

So why not always integrate out hyperparameters whenever possible? Let us answer
this question by magnifying the systematic differences between the two approaches. With
sufficient magnification it will become evident to the intuition that the approximation of
the evidence framework is superior to the MAP approximation.

The distinction between Wyp and Wyp|q,, 18 similar to that between the two estimators
of standard deviation on a calculator, oy and oy_;, the former being the biased maximum
likelihood estimator, whereas the latter is unbiased. The true posterior distribution has
a skew peak, so that the MAP parameters are not representative of the whole posterior
distribution. This is best illustrated by an example.

5.1 The widget example

A collection of widgets ¢ = 1..k have a property called ‘wodge’, w;, which we measure,
widget by widget, in noisy experiments with a known noise level ¢, =1.0. Our model for
these quantities is that they come from a Gaussian prior P(w;|a, H), where a=1/02 is not
known. Our prior for this variance is flat over logo,, from o, = 0.1 to o,, = 10.

Scenario 1. Suppose four widgets have been measured and give the following data:
{d1,dz2,d3,ds} = {2.2, —2.2, 2.8, —2.8}. The task (problem A) is to infer the wodges of
these four widgets, i.e., to produce a representative w with error bars.

Evidence framework: using equation (16) iteratively we find aye = 0.19, Wyp|aype =
{1.9,-1.9,2.4, —2.4}, each with error bars +0.9.

MAP method: We can identify maxima of the true posterior by finding attracting
fixed points of equation (26) using a computer algebra system. For scenario 1, there are
two attracting fixed points, corresponding to two maxima like those in figure 1(f): the fixed
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point with the smaller value of aeg has aes = 0.25, wyp = {1.8,—1.8,2.2, —2.2}, each with
error bars +0.9. The other maximum is located at wyp = {0.03,—0.03,0.04, —0.04} and is
associated with aes = 65; here, each parameter has error bars +0.1.

Concentrating our attention on the sensible maximum, we might note that Wyp|aye is
slightly less regularized than wy,, but there is not much disagreement between the two
methods when all the parameters are well-determined.

Scenario 2. Suppose in addition to the four measurements above we are now informed
that there are an additional four widgets that have been measured with a much less accurate
instrument, having o], =100.0. Thus we now have both well-determined and ill-determined
parameters, as in a typical ill-posed problem. The data from these measurements were a
string of uninformative values, {ds, ds, dr,ds} = {100, —100, 100, —100}.

We are again asked to infer the wodges of the widgets. Intuitively, we would like our infer-
ences about the well-measured widgets to be negligibly affected by this vacuous information
about the poorly—measured widgets, just as the true Bayesian predictive distributions are
unaffected. But clearly with k=8, the difference between k and + in equations (16) and
(24) is going to become significant. The value of aes will be substantially greater than that
of amp.

In the evidence framework the value of + is almost exactly the same, since each of the
ill-determined parameters has \; ~ 0 and adds nothing to the number of well-determined
parameters (17). So the value of ay and the predictive distributions are unchanged.

In contrast, the MAP solution changes drastically. The maximum associated with aeg =
0.25 vanishes, and the only maximum of the true posterior probability is the spike Wy
which is squashed close to zero. Solving equation (26) in a computer algebra system, we
find: ae = 79.5, wyp = {0.03,—-0.03,0.03,—0.03,0.0001, —0.0001,0.0001, —0.0001}, with
marginal error bars on all eight parameters o, p = 0.11.

Thus the MAP Gaussian approximation is terribly biased towards zero. The final disaster
of this approach is that the error bars on the parameters are also very small.

This is not a contrived example. It contains the basic feature of ill-posed problems:
that there are both well-determined and poorly—determined parameters. To aid compre-
hension, the two sets of parameters are separated. This example can be transformed into
a typical ill-posed problem simply by rotating the basis to mix the parameters together.
In neural networks, a pair of scenarios identical to those discussed above can arise if there
are a large number of poorly determined parameters which have been set to zero by the
regularizer, and we consider two scenarios. In scenario 1, the network is ‘pruned’, removing
the ill-determined parameters. In scenario 2, the parameters are retained, and take on their
most probable value, zero. In each case, what is the optimal setting of the weight decay
rate a (assuming the traditional regularizer w'w/2)? We would expect the answer to be
unchanged. Yet the MAP method effectively sets a to a much larger value in the second
scenario.
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The MAP method may locate the true posterior maximum, but it fails to capture most
of the true probability mass. Figure 2 conveys in two dimensions this difference between
the MAP Gaussian approximation and the Gaussian approximation given by evidence max-
imization. The larger the number of dimensions we are in, the higher the density in the
skew peak becomes, and the more it dominates the maximization of the density. But the
mass associated with the peak is not increasing.

If we maximize a probability density which is equal to a superposition of Gaussians,
the location of the maximum will be chiefly determined by the locations of the Gaussians
with smallest standard deviation, rather than the locations of the Gaussians with greatest
probability mass.

6 Inference in many dimensions

In many dimensions, therefore, new intuitions are needed.

Nearly all of the volume of a k—dimensional hypersphere is in a thin shell near its surface.
For example, in 1000 dimensions, 90% of a hypersphere of radius 1.0 is within a depth of
0.0023 of its surface. A central core of the hypersphere, with radius 0.5, contains less than
1/10%% of the volume.

This has an important effect on high—dimensional probability distributions. Consider a
Gaussian distribution P(w) = (1/v/27 04 )* exp(— Y. ¥ w2 /202 ). Nearly all of the probabil-
ity mass of a Gaussian is in a thin shell of radius r = vko,, and of thickness o r/v/k. For
example, in 1000 dimensions, 90% of the mass of a Gaussian with o,, = 1 is in a shell of
radius 31.6 and thickness 2.8. However, the probability density at the origin is e*/? ~ 10217
times bigger than the density at this shell where most of the probability mass is.

Now consider two Gaussian densities in 1000 dimensions which differ in radius o,, by just
1%, and which contain equal total probability mass. The maximum probability density is
greater at the centre of the Gaussian with smaller o,, by a factor of ~ exp(0.01%k) ~ 20,000.

A typical true posterior distribution for an ill-posed problem is a weighted superposition
of Gaussians with varying means and standard deviations, so the true posterior has a skew
peak, with the maximum of the probability density located near the mean of the Gaussian
distribution that has the smallest standard deviation, not the Gaussian with the greatest
weight. Thus a Gaussian fitted at the MAP parameters is a bad approximation to the
distribution: it is in the wrong place, and its error bars are far too small. In contrast,
the evidence approximation is given by selecting from the superposition of Gaussians the
Gaussian component which has the biggest weight, and which thus captures most of the
probability mass of the true posterior.

In summary, probability density maxima often have very little associated probability
mass — even though the value of the probability density there may be immense — because
they have so little associated volume. If a distribution is composed of a mixture of Gaussians
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with different o, the probability density maxima are strongly dominated by smaller values
of 0. This is why the MAP method finds a silly solution in the widget example. Recall
that in the case of a thermodynamic system in its canonical ensemble (section 4.2), the state
of the system that has maximum probability density is the ground state, regardless of the
temperature of the system.

Thus the locations of probability density maxima in many dimensions are generally
misleading and irrelevant. Probability densities should only be maximized if there is good
reason to believe that the location of the maximum conveys useful information about the
whole distribution, e.g., if the distribution is approximately Gaussian.

7 Relationship between evidence maximization and ‘en-

semble learning’

A novel approach to the approximation of Bayesian inference has recently been introduced
by Hinton and van Camp (1993). I will first review the concept of Ensemble Learning by
Free Energy Minimization for a simplified model with the hyperparameter a omitted.

In traditional approaches to neural networks, a single parameter vector w is optimized by
maximum likelihood or penalized maximum likelihood. In the Bayesian interpretation, these
optimized parameters are viewed as defining the mode of a posterior probability distribution
P(w|D,H) (given data D and model assumptions ), which can be approximated, with a
Gaussian distribution for example, in order to obtain predictive distributions and optimize
model control parameters.

The new concept introduced by Hinton and van Camp (1993) is to work in terms of
an approximating ensemble Q(w;6), that is, a probability distribution over the parame-
ters, and optimize the ensemble (by varying its own parameters §) so that it approximates
the posterior distribution of the parameters P(w|D,?H) as well as possible. The objective
function chosen to measure the quality of the approximation is a wvariational free energy
(Feynman 1972),

P(Dlw, H)P(w|H)
Q(w;0)
The free energy F(6) is bounded below by —log P(D|H) and only attains this value for

Q(w;0) = P(w|D,#). F(6) can be viewed as the sum of —log P(D|#H) and the Kullback—
Leibler divergence between Q(w; ) and P(w|D,H). For certain models and certain approx-

F(O) = - / d*w Q(w;6) log . (32)

imating distributions, this free energy, and its derivatives with respect to the ensemble’s
parameters, can be evaluated. [This is the main reason for choosing the objective func-
tion F'(#) rather than some other measure of distance between Q(w;#6) and P(w|D,H).] A
longer review of Ensemble Learning including references to applications may be found in
(MacKay 1995).

19



In this section I demonstrate that a free energy approximation for the model studied in
this paper reproduces the method of the evidence framework precisely. This result is not
viewed as a justification for the evidence framework, but rather as giving insight into the
nature of the approximations made by this framework.

7.1 Free energy approximation for a model with a hyperparameter

Let us assume, in addition to the likelihood function and prior over w of equations (3)
and (4), that the prior over « is a gamma distribution, P(a|H) = I'(@; by, ca), where this
notation means:

1 a1 a
I(a;ba,Ca) = =———— ——],0<a< . 33
(@barca) = s T 0~ ) 0 S a < o (33)
This distribution has mean byc, and variance b%c,.

Let us consider approximating the joint distribution of w and « given the data,

P(D|w, H)P(w|a, H)P(a|H)

P(W,OZ|D,H) = P(D|H) )

(34)

by a distribution Q(w,a). I make one assumption only, namely we will use an approximat-
ing distribution that is constrained to have the separable form Q(w,a) = Qw(W)Q.(a). No
functional form for these distributions is assumed. [The reason for choosing this separable
form is that this is the most complex approximating distribution for which the computa-
tions are tractable — we don’t necessarily believe the posterior density is approximately
separable.] We write down a variational free energy,

P(D|w,H)P(w|a,H)P(a|H)
Qw(W)Qa(a) '

This functional is bounded below by the evidence for the model thus: F' > —log P(D|H),
with equality if and only if Q(w,a) = P(w,a|D,H). We can find the optimal separable

FQ) =- / dw dox Quu(W)Qa() log (35)

distribution @ by considering separately the optimization of F' over Qw(w) for fixed Q4 (a),
and then the optimization of Q4 () for fixed Qw(W).

7.2 Optimization of Qy (W)

As a functional of Qw (W), F is:

F - /dw Qw(w) [/da Qa(@)log P(w|a) + log P(D|w,H) — log Q(w)] + const(36)

= /dw Qw(w) [/da Qa(a)a%wa + BEp(w) + log Q(w)] + const.’ (37)
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The dependence on @, thus collapses down to a dependence simply on the mean value of

a,

a= /da Qu(a)a. (38)

F = /dw Qw(w) [d%wa + BEp(w) +logQ(w)| + const.’ (39)

Noting that the w—dependent terms —asww' — 3Ep(w) are the log of a posterior distribu-

tion, and using the theorem that a divergence [ @ log(Q/P) is minimized by setting @ = P,
we can immediately write down the distribution Qw(w) that minimizes this expression. For
given data D and Q,, the optimizing distribution Q°P*(w) is a Gaussian identical to the
posterior distribution for a particular value of o = a&.

Q%P (w) = P(w|D,a,H) = Normal(Wyp |5, X)- (40)

7.3 Optimization of Q,(«)
As a functional of Q,(a), F is:
F = —/da Q) [/dw Qw(w)log P(w|a,H) + log P(a|H) — logQa(a)] + const(41)
_ /da Qala) [% Jdw Qu(w)w'w — £loga — (ca — 1) loga + & +log Qa(a)] (42)

1 1 1
= /da Qo) [(gprmTWMpa + §Trace2 + b_> Q

- (g + o — 1) log a + log Qa(a)] + const.’ (43)

where c,, b, are the parameters of the gamma prior on «. Here, the a—dependent expression
in the brackets can be recognized as the log of a gamma distribution, giving as the optimal
distribution that minimizes F' for fixed Qw:

Q(&pt(a) =T(a; b, cl) (44)
where
1V = 1/ba+ §Wur|a War|a + 3 TraceS (45)
¢ = k/2+cq '

This completes our derivation of the free energy optimization. The optimal approximating
distribution is given by finding the gamma distribution for o and the normal distribution
for w that satisfy the simultaneous equations (38), (40) and (45).
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7.4 Comparison with the evidence framework

To understand this result we complete the loop by evaluating the mean &' for this optimized
gamma distribution, which is:

k
3 +¢

—1 __ 1 2 @

a=be= A+ iw s ™Wae g + s TraceX (46)

[ 3 Wwmp|la WwmP|a 2
In the special case of an uninformative prior on a (¢, — 0 and i — 0) we obtain:
k
a = (47)

Wup|a' Wue|a T+ TraceX

Is this the same optimal o as that found by evidence maximization?? The answer is yes.

Substituting (equation 16) w = v/onp, and using v = k — aTraceX, we find

IAP |amp Wp|amp
that if we set @ = @ = ayp on the right hand side we obtain

a' = i
Cyla+ (k-n)/a

Thus any optimum of the evidence approximation also corresponds to a minimum of the

=a. (48)

free energy. This relationship is only exact in the case of the linear regression model studied
in this paper. If the likelihood is non—Gaussian then P(w|D, &, H) is no longer a Gaussian,
so the step at equation (40) does not follow.

Intuition for the relationship between evidence maximization and ensemble
learning

These two approaches give complementary views of the task of inferring a given the data.

In the evidence framework we examine the optimized value of W, Wy, and think

2

., of the prior distribution of w.

of (Wyp|o)? as giving information about the variance o
The maximum likelihood estimator of o, would be o7, ;) = (Wup|a)?/k, but the evidence
framework modifies this estimator to take into account the fact that some of the k& param-
eters have not been determined by the data, and have effectively been set to zero by the
prior. Thus the evidence-maximizing estimate replaces k by the effective number of well
determined parameters -: ai(MP) = (Wapja)?/7-

The free energy minimization approach is like an EM algorithm (Dempster et al. 1977),
in which we wish to find the most probable a and do this by introducing an E-step in
which a distribution over w is obtained (Neal and Hinton 1998). This distribution takes

into account the k — «y ill-determined parameters by assigning each of them a variance of

2

Ow

in the matrix X. Then when the M—step occurs, finding the optimal «, the maximum

20r ‘are these the same as those found by evidence maximization?’ if there are multiple optima.
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likelihood equation o2 (vz) = (Wp|a)?/k is modified by adding these variance terms to the
i(FE) = [(Wup|a)? + TraceX] /k.
Thus evidence maximization decrements the denominator of the equation o

numerator: o
2 —
w(mML) —
(WMP|a)2/ k to take into account the smallness of the ill-determined parameters, whereas
free energy minimization increments the numerator to take into account their variability.
As we have seen, the two formulae converge on the identical result.

Further comments

There are two small differences between evidence maximization and free energy minimiza-
tion.

1. The variance of the optimized gamma distribution for « is, in the limit of the unin-
formative prior,
var(a) = b°¢ = 2k/(k/a)? = a® [k (49)

so that log o has standard error /2/k. This contrasts with the result \/2/7 from the
evidence framework.

2. This free energy approximation for Qw (w) fails to produce the small order correction
terms to be identified in section 8.3, which arise because of the uncertainty in a. This
failure is caused by the separability assumption in the ensemble approximation.

8 Conditions for the evidence approximation

We have observed in section 5.1 that the MAP method can lead to absurdly biased answers
if there are many ill-determined parameters. In contrast, I now discuss conditions under
which the evidence approximation works. I discuss again the case of linear models with
Gaussian probability distributions.

What do we care about when we approximate a complex probability distribution by
a simple one? My definition of a good approximation is a practical one, concerned with
(A) estimating parameters; (B) estimating the evidence accurately; and (C) getting the
predictive mass in the right place. Estimation of individual parameters (A) is a special case
of prediction (C), so in the following I will address only problems (C) and (B).

For convenience let us work in the eigenvector basis where the prior over w (given «)
and the likelihood are both diagonal Gaussian functions. The curvature of the log likelihood
is represented by eigenvalues {),}. For a typical ill-posed problem these eigenvalues vary
in value by several orders of magnitude. Without loss of generality let us assume k data
measurements {d, }, such that d, = VAqwq +v, where the noise standard deviation is o, = 1.
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We define the probability distribution of everything by the product of the distributions:

1

% 1 &
, P(w|la,H) = (%) exp <—§a2wi> , and  (50)
1

k 2
P(Dlw,H) = (2r) %% exp {_% > (\/Ewa - da) } : (51)

The discussion proceeds in two steps. First, the posterior distribution over a must have
a single sharp peak at a,p. No general guarantee can be given for this to be the case, but
various pointers are given. Second, given a sharp Gaussian posterior over log a, it is proved
that the evidence approximation introduces negligible error.

8.1 Concentration of P(loga|D,?#) in a single maximum

Condition 1 In the posterior distribution over loga, all the probability mass should be
contained in a single sharp maximum.

For this to hold, several sub—conditions are needed. If there is any doubt whether these
conditions are sufficient, it is straightforward (at least in the case of a single hyperparameter)
to iterate all the way down the a trajectory, explicitly evaluating P(loga|D,H).

The prior over a must be such that the posterior has negligible mass at loga — +oo.
In cases where the signal to noise ratio of the data is very low, there may be a significant
tail in the evidence for large a. There may even be no maximum in the evidence, in which
case the evidence framework gives singular behaviour, with a going to infinity. But often
the tails of the evidence are small, and contain negligible mass if our prior over log @ has
cutoffs at some aupin and @max surrounding aye. For each data analysis problem, one may
evaluate the critical amax above which the posterior would be measurably affected by the
large a tail of the evidence (Gull 1989). Often, as Gull points out, this critical value of amax
has bizarrely large magnitude.

Even if a flat prior between appropriate o, and anax is used, it is possible in principle
for the posterior P(loga|D,H) to be multi-modal. However this is not expected when the
model space is well matched to the data. Examples of multi-modality only arise if the data
are grossly at variance with the model. For example, if some large eigenvalue measurements
give small d,(;), and some measurements with small eigenvalue give large d,(,), then the
posterior over a can have two peaks, one at large a which nicely explains d, (), but must
attribute d,(5) to unusually large amounts of noise, and one at small a which nicely explains
dqa(s), but must attribute d,(y to we(;) being unexpectedly close to zero. This concept may
be formalized into a quantitative test as follows.

If we accept the model, then we believe that there is a true value of @ = ar, and that given
o, the data measurements d, are the sum of two independent Gaussian variables /A, w,
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and v, so that P(d,|a:,H) = Norma.l(O,aZlaT), where GZIaT = 2‘—; + 1. The expectation
of d? is (d2) = 2—; + 1. We therefore expect that there is an ar such that the quantities

{d2/07,,} are independently distributed like x* with one degree of freedom.

Definition 1 A data set {d,} is grossly at variance with the model for o given value of

a at significance level T, if any of the quantities j, = dg/(% + 1) is not in the interval
[e7",1+7].

It is conjectured that if we find a value of & = ay which locally maximizes the evidence,
and with which the data are not grossly at variance, then there are no other maxima over
a.

Conversely, if the data are grossly at variance with a local maximum oy, then there
may be multiple maxima in «, and the evidence approximation may be inaccurate. In these
circumstances one might also suspect that the entire model is inadequate in some way.

Assuming that P(loga|D, ) has a single maximum over log a,, how sharp is it expected
to be? I now establish conditions under which the P(loga|D,#) is locally Gaussian and
sharp.

Definition 2 The symbol n. is defined by:

Ne = Z (L\&. (52)

Ao + Qpp)?
This is a measure of the number of eigenvalues \, within approzimately e—fold of ayp.

In the following, I will assume that n, < ~y, but this condition is not essential for the
evidence approximation to be valid. If n, < ~, and the data are not grossly at variance
with ayp, then the Taylor expansion of log P(a|D,H) about a=ayp is:

Olog P(D|a, H) 1 9 .
—loga . = 3 (7 — awMPlaMP) =0 (53)
9?1log P(D|a, H) 9 ¥
~ - _2 4
OogaP o, e T i
8%log P(D|a, H) 9 y
O0ga)® oy, e T T %

The first derivative is exact, assuming that the eigenvalues A\, are independent of a;, which is
true in the case of a Gaussian prior on w (Bryan 1990). The second and third derivatives are
approximate, with terms proportional to n. being omitted. Now, if v > 1, then the second
derivative is relatively large, and the third derivative is relatively small (even though they
are numerically equal), since in the expansion P(I) = exp(—£I? + 41+ . ..), the second term
gives a negligible perturbation for I ~ ¢~/ if d <« ¢3/2. In this case, since d~c~vy>1,
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the perturbation introduced by the higher order terms is O(y~'/2). Thus the posterior
distribution over log o has a maximum that is both locally Gaussian and sharp if v > 1
and n. < 7. The expression for the evidence (14) follows.

8.2 Error of low—dimensional predictive distributions

I will now assume that the posterior distribution P(log«a|D,H) is Gaussian with standard
deviation 0145 o p = 1/4/K7Y, With ky > 1, and k = O(1).

Theorem 1 Consider a scalar which depends linearly on w, y = g - w. The evidence
approzimation’s predictive distribution for y is close to the exact predictive distribution, for
nearly all projections g. In the case g = w, the error (measured by a cross—entropy) is of
order \/n./ky. For all g perpendicular to this direction, the error is of order \/1/kx.

A similar result is expected still to hold when the dimensionality of y is greater than
one, provided that it is much less than /7.
Proof: At ‘level 17, we infer w for a fixed value of a:

2
P(w|D,a, H) x exp {—% > (A +a) (wa \/Eda) } , (56)

" B Ao + @
The most probable w given this value of a is: wi™'® = /Xada/(Aa + a). The posterior

distribution is Gaussian about this most probable w. We introduce a typical w, that is, a
sample from the posterior for a particular value of a:

Typla _ V Aala Ta 57
Y hto  Vata (57)

where 7, is a sample from Normal(0,1).
Now, assuming that log a has a Gaussian posterior distribution with standard deviation
1/./k7, a typical a, i.e., a sample from this posterior, is given to leading order by

s
" = (1 + m) , (58)
where s is a sample from Normal(0,1). We now substitute this ™% into (57) and obtain
a typical w from the true posterior distribution, which depends on k+1 random variables
{r.},s. We expand each component of this vector w™** in powers of 1/~:

wre = YAada (1— s _Ow 8 G )+

. )\a + o Vv EY /\a + Qe Ky (/\a + aMP)2
Tia(l_lL&Jﬁﬁizm)_ (59)
VAa + O 2\/"77)\a+aMP 8/‘3’7()\a+aMP)
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We now examine the mean and variance of y™% = 3 gow**. Setting (r2) = (s?) =1
and dropping terms of higher order than 1/v, we find that whereas the evidence approxi-
mation gives a Gaussian predictive distribution for y which has mean and variance:

2
— MP‘aMP 2 — ga 60
Ho Ea JaW, y Og Ea /\a T Qe ) ( )

the true predictive distribution is, to order 1/, Gaussian with mean and variance:

1 MP |amP C“I%AP
- - omp___MP 61
M1 Ho + Ky ;gawa (Aa ¥ aMp)2 ) ( )
ot =i+ L4 (S z 2
1 0 Ky att /\ + aMP Aa + Onp (/\a + aMP)2 ‘

How wrong can the evidence approximation be? Since both distributions are Gaussian, it is
simple to evaluate the Kullback-Leibler distance between them. The cross entropy between
po =Normal(ug,02) and p1 =Normal(u1,0?) is

2 2 2\ 2 2 2\ 3
P _ 1(p — o) 1 (o1 —0g 91 — 9
H = log— = - - O —_ . 63
(poapl) /pl 0og 0 9 0_(2) + 4 0_3 + a_g ( )

We consider the two dominant terms separately. The difference in means gives the term

(ul - N0)2 _ MP aMp MP
s = Zhw ! o > 2, (64)

where hg = ¢go/vAa + aup. The worst case is given by the direction g such that h, =

2
MP o (A:;W This worst case gives an upper bound to the contribution to the cross
entropy:
A 2
(1~ o)’ w2,

< 65

Ug - I<.72 2 Z +aMP ( )

< C!MP Z MP\aMp = « 1. (66)
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So the change in p never has a significant effect.
The variance term can be split into two terms:

(U%—U(%)Q_i Z hy wMPIaMP —|—Zh2 e Zh (67)
O'g n K7y \/)\ + apmp o T aMP @
where, as above, h, = go/vAs + Qup-
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For the first term, the worst case is the direction hy = wy™ 1*M® Te—, i.e., the radial

direction g = o Wyp|aye - Substituting in this direction, we find:

1 2 (12
First term < — » wiFlowe’ M2 (@)
Ky - )\a + Qmp
1
< Qyp ngP\aMpz = = = O(l) (69)
Ky “ k
P|amp

We can improve this bound by substituting for wq in terms of d, and making use of

the definition of n.. Only n. of the terms in the sum in equation (68) are significant. Thus

n
First term < —. (70)
Ky
So this term can give a significant effect, but only in one direction; for any direction orthog-
onal (in h) to this radial direction, this term is zero.
Finally, we examine the second term:

Loy O Son< L «1 (71)
Ky ®(Ag + ayp )2 - e Ky )

So this term never has a significant effect.

Conclusion

The evidence approximation affects the mean and variance of properties y of w, but only
to within O(y~'/2) of the property’s standard deviation; this error is insignificant, for large

7. The sole exception is the direction g = Wy along which the variance is erroneously

aMP ?
small, with a cross—entropy error of order O(n. /7).

8.3 A correction term

This result motivates a straightforward term which could be added to the inverse Hessian
of the evidence approximation, to correct the predictive variance in this direction. The
predictive variance for a general y = g"w could be estimated by

UZ = gT (2 + 0'120g a|Dw{\/IP\awllv1P\aT) g, (72)

where W, = OWyp|o/0(loga) = aXWyp|a, and of 1 = % With this correction,

the predictive distribution for any direction would be in error only by order O(1/v). If

the noise variance 02 = 7!

2 _ 2
OlogB|D = N—7"

is also uncertain, then the factor ‘7120g D is incremented by
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9 Discussion

The MAP method, though it can give exact values for the relative probability densities
of two weight vectors, is capable of giving a Gaussian approximation which is highly un-
representative of the true posterior. In high dimensional spaces, maxima of densities are
misleading. MAP estimates play no fundamental role in Bayesian inference, and they can
change arbitrarily with arbitrary re—parameterizations. The problem with MAP estimates
is that they maximize the probability density, without taking account of the complementary
volume information. What matters is where the probability mass is, and mass is equal to
density times volume. When there are many ill-determined parameters, the MAP method’s
integration over « yields a wyp which is severely over-regularized. Integration over the
noise level 1/4 to give the true likelihood leads to a bias in the other direction. [These two
biases may cancel: the evidence framework’s Wyp|ayp, e COincides with wye if the number
of well-determined parameters happens to obey the condition v/k = N/(N + k), where N
is the number of data points.]

There are two general take-home messages.

(1) When one has a choice of which variables to integrate over and which to maximize
over, one should integrate over as many variables as possible, in order to capture the rele-
vant volume information. There are typically far fewer regularization constants and other
hyperparameters than there are ‘level 1’ parameters.

(2) If practical Bayesian methods involve approximations such as fitting a Gaussian to a
posterior distribution, then one should think twice before integrating out hyperparameters
(Gull 1988). The probability density which results from such an integration typically has
a skew peak; a Gaussian fitted at the peak may not approximate the distribution well. In
contrast, optimization of the hyperparameters can give a Gaussian approximation which,
for predictive purposes, puts most of the probability mass in the right place.

The evidence approximation, which sets hyperparameters so as to maximize the evidence,
is not intended to produce an accurate approximation to the numerical value of the true
posterior density over w; and it does not. But what matters is whether low—dimensional
properties of w (i.e., predictions) are seriously mis—calculated as a result of the evidence
approximation. The main conditions for the evidence approximation are that the data
should not be grossly at variance with the model, and that the number of well-determined
parameters v should be large. How large depends on the problem, but often a value as
small as v ~ 3 is sufficient, because this means that a is determined to within a factor of e
(recall 014 o|p =~ +/2/7); predictive distributions are often insensitive to changes of a of this
magnitude. Thus the approximation is usually good if we have enough data to determine a
few parameters.

If satisfactory conditions do not hold for the evidence approximation (e.g., if v is too
small), then it should be emphasized that this would not motivate integrating out « first.
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The MAP approximation is systematically inferior to the evidence approximation. Practical
alternative methods for dealing with hyperparameters include the deterministic method of
Bryan (1990), who finds it most convenient numerically to retain « as an explicit vari-
able, and integrate it out last, and the Markov chain Monte Carlo implementation of
Neal (1996) which samples the hyperparameters and parameters from the joint distribu-
tion P(w,a|D,H).

The relationship between evidence maximization and ensemble learning derived in section
7 gives a convergence proof (at least for linear models) for a re—estimation formula for a
(equation 46) which previous work on the evidence framework had not provided. The steps
of re-estimating @ and computing the new distribution Q. (w) both decrease F, and F is
bounded below, so the iterative procedure must converge.

A final point in favour of the evidence framework is that it can be naturally extended (at
least approximately) to more elaborate priors such as mixture models; it would be difficult
to integrate over the mixture hyperparameters in order to evaluate the true prior in these
cases.
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