Models for Dice Factories and Amino Acid Probability Vectors. Draft
1.1

David J.C. MacKay
Cavendish Laboratory
mackay@mrao.cam.ac.uk

October 5, 1994

Abstract

Protein alignments are commonly characterized by the probability vectors over amino acids in
each column of the alignment. This paper develops various models for the probability distribution
of these probability vectors. First a simple Dirichlet distribution is used, then a mixture of Dirich-
lets. Finally a componential model employing a ‘density network’ is described. These models are
optimized and compared using Bayesian methods.

1 Introduction

A protein is a sequence of amino acids. There are 20 different amino acids. A protein family is a set
of proteins believed to have similar structure, although their amino acid sequences may be somewhat
different. The sequences of the proteins in one protein family can be aligned, one protein per row, such
that each column corresponds to a particular amino acid location in the common structure. When we
look down a column, we find the 20 amino acids occurring with frequencies that differ from column to
column. A protein family is commonly characterized by specifying the frequency distribution for each
column. Each column is like a die from a dice factory, having a bias to some faces rather than others.
This paper describes the modelling of the distribution of probabilities over amino acids.

The development of a model for the probability distribution over amino acid probability vectors is
important for two reasons. The first is that such a model defines a prior probability distribution over
probability vectors to be encountered in other protein families; with a good prior P({qy;}), we can
obtain an accurate model for a new protein family with less data, i.e., fewer examples of proteins from
the family. The second reason is that this modelling activity may in itself be interesting, giving new
insight into amino acid properties. In this paper three different models for amino acid probabilities are
described and adapted to data using Bayesian methods.

2 Dirichlet distributions

The simplest model P({q;}) that is often used (implicitly or explicitly) in protein family modelling
with ‘hidden Markov models’ is a Dirichlet distribution. Dirichlet distributions are particularly con-
venient prior distributions to work with where count data is involved. The optimization of Dirichlet
distributions is discussed by ?), and is reviewed here.

The Dirichlet distribution for a probability vector p with I components is parameterized by a
measure (a positive vector) which I will write here as u = am, where m is a normalized measure over
the I components (3 m; = 1), and « is positive:

1
Z(am)

I
P(p|lam) = p*™i=1§ (3. p; — 1) = Dirichlet(p|am) (1)
=1

The function §(z) is the Dirac delta function which here restricts the distribution to the simplex such
that >, p; = 1. The normalizing constant is Z(am) = []; ['(am;) /I'(a) . The vector m is the mean
of the probability distribution:

/dlp Dirichlet(plam)p = m (2)

The parameter @ measures the sharpness of the distribution, i.e., it measures how different we expect
typical samples p from the distribution to be from the mean m. A large value of a produces a
distribution over p which is sharply peaked around m. As « is decreased, the distribution becomes
broader; as « approaches zero, the distribution spreads into the corners of the simplex. For « close to
zero, a typical sample p from Dirichlet(p|am) has nearly all its mass on just one component p;.

If we observe samples from p and obtain counts F = (Fy, Fy,...Fy) of the possible outcomes ¢,
then the posterior for the probability vector is another Dirichlet distribution:

Fi+am; —1
Pp|F,m,0 %) o [T T T S (-) 3)
= Dirichlet(p|F + am). (4)

The predictive distribution given the data F is then:

F; + am;

P(i|F, am) = / 4'p Dirichlet(p[F + am) p = = —=

The value of « defines the number of samples from p that are required in order that the data dominate
over the prior in subsequent predictions. Additional useful formulae and approximations are found in
appendix A.

Many methods in genome modelling and other fields make use of predictions having the form of
equation (5), in which the empirical frequency F;/ >, Fis is ‘smoothed’ by an offset am;. Rarely,
however, are objective methods used to set these smoothing parameters {am;}. ?) showed how to
optimize these parameters, given many sets of counts {FU}{, by viewing am as the hyperparameters
of a Dirichlet distribution.

The dice factory

It may be helpful to consider this problem in the toy context of a ‘dice factory’. Imagine that a factory
produces biased I-sided dice. We receive J dice labelled by j = 1...J. Each die j is assumed to have
a probability vector q; = {‘]ilj}{:l that defines the probability of each of the I possible outcomes.
Each die j is rolled a number of times Fj, and we are told the counts of the outcomes, Fj;, which give
us imperfect information about the parameters q|;. Our task is to develop a model for the probability
distribution P(q) of the vectors q, given the data {F|j}.

3 Modelling the dice factory with a Dirichlet distribution

We might model the probability vector q of a single die as coming from a Dirichlet prior, with unknown
hyperparameters m (a normalized vector, representing the average probability vector of a die from the
factory) and « (which determines the peakedness of the probability distribution of probability vectors
about this average):

I
P(qlom) = 1/Z_H T (Y — 1) (6)

Under this model, the task of modelling the factory’s properties boils down to the inference of the
parameters am from the count data. We may distinguish two levels of inference. At the first level we
assume we know the hyperparameters, and we infer the likely probability vector q|; of die j given the
data. At the second level, we infer the hyperparameters themselves, given the data.

4 The dice factory — count data

LEvEL 1
Consider a particular die j. For a given value of am, we can infer the posterior (??) and obtain the
predictive distribution:

Fy; +am;

- (™)

<qi|j> =
LEVEL 2

The posterior for m, « is proportional to the following ‘evidence’ term:

(m(mu +am) ())

P(D|am) = H

J

P(Fj+e) LT (em:)

To find the most probable am, we differentiate the gamma functions.

f log P(Dlam) = 3 [W(Ey; +w) = (F) + Y us) + U (S wr) = ¥ (uy)] (9)

J

Formulae for more general algorithms

Algorithms given in (?) were based on series expansions of ¥(u) about © = oo and u = 0 respectively,
and were specialised for particular regimes of o and w;. The following formula, although it is not part
of a series expansion, gives an approximation to the difference W(F 4 u) — ¥(u) that is accurate to
within 2% for all u and all positive integers F:

F4+u—-1/2

u+1/2 (10)

1
V(F+u)—V(u) ~ —+log
u
This approximation has been used in an algorithm that can efficiently cope with all values of « and
u;. It is used to evaluate the derivative (9), which is then passed to a conjugate gradients optimizer in
order to find the hyperparameters am that maximize the evidence.

Mixture models

If we believe that in proteins there are different types of column, such that for each type of column
the probabilities q are similar, then a mixture model may be appropriate. A mixture model H;(c)
defines a density over q as a weighted combination of C' independently parameterized simple distribu-
tions, where each mixture component ¢ = 1...C could be a Dirichlet or entropic distribution. Various
algorithms can be used to implement mixture models: both Monte Carlo methods (?) and Gaus-
sian approximations (Hanson, Stutz and Cheeseman 1991). The basic ideas of mixture modelling are
reviewed in appendix ?? which I will probably cut from future drafts.

In this section I report the results of applying a mixture-of-Dirichlets model to data from protein
families. These models are relevant to language modelling, speech modelling, text compression, and
the modelling of DNA and protein sequences.

NB, a mixture model in this context is not asserting that there are types of amino acid; it asserts
that there are types of distribution over amino acid, and each probability distribution belongs to one

type.

5 Mixture models

A mixture model Hyyc) defines a density over q as a weighted combination of C' independently pa-
rameterised simple distributions, where each mixture component ¢ = 1...C could be a Dirichlet or

entropic distribution. Various algorithms can be used to implement mixture models: both Monte Carlo
methods (?) and Gaussian approximations (Hanson et al. 1991). Many algorithms depend on the eval-
uation of the probability of the data given various assumptions, and the gradient of the log probability
with respect to the model parameters.

Mixture modelling - details

A mixture model Hpscy defines a density over a variable q as a weighted combination of C' indepen-
dently parameterised simple distributions. Labelling the mixture components with ¢ =1...C, we give
each component a weight p™ such that Z _,pM =1, and a parameter vector u® that parameterizes
a density P(qg|u®). We denote the entire collection of parameters {u®, p}<_, by U. We consider a
collection of vectors Q = {q(j)}]le, and use the notation j € c¢ to denote the proposition that the
vector labelled n comes from class ¢. Noting that P(j € ¢|U, Hpp (o)) = pM | we write down:

J C
P(Q|U, Harc H P P(@W|n € ¢,u)]. (11)

There are various computations we will want to perform.

Classification
If the vectors q are observable, and a particular value of the parameters U of the mixture model is
given, then we can infer the probability that an individual vector q/) belongs to cluster ¢, which we
will abbreviate to p,;.
Y P(a]j € ¢ uf)
Yoo Y P(aU)]j € ¢, u)

pepi = P(j € ¢|d¥, U, Har(e) = (12)

In the case of language modelling, the vectors q?) are not directly observable, but are measured via
data FU), and we integrate over q\/) to obtain for each class ¢ the evidence:

P(F(j)|n €c,u) = /dq(j) P(F(j)|q(j))P(q(j)|j € c,u’). (13)

In this case, we replace the hidden q(¥) in (12) by the observable F and define p,; by:
pe' P(EY)]j € ¢, u?)

pelj = P(j € el FV, U Hge) = Yo PMP(FU)|j € ¢, u)

(14)

Inference of U
Given data F = {F } we wish to infer the hyperparameters of the mixture model. I proceed by
evaluating the gradient of the evidence with respect to the hyperparameters so as to optimize them,
to give a mode and error bars as a summary of the posterior distribution of the hyperparameters. The
first and second derivatives of the log of the probability (11) can be found as follows.

(] 4 c
pc auc (q |.] € C7 u)
FIUH = E . -
(F| M(C)) = [c‘ 1pc (F(])|.7 € ¢/, u)

(15)

J
= Z I:pc|]a - logP(|.] € ¢, uc):| .

=1

s,

¢ is a sum over all

Thus the gradient of the total log probability with respect to the parameters u
examples ql) of log probability gradients, each of them weighted by the probability pe|; that example

7 does indeed belong to class c.

The derivative with respect to pM is also simple. It is computationally most convenient to represent
these probabilities by logarithms, defining p™ in terms of 1 thus:
M exp le
=" 16
Pe Sl exply (16)
This representation has one excess degree of freedom (addition of a constant to all [.), but this need
not cause any difficulty. The gradient of the total log probability is:

0
a—llOgP(F|U ,HM Epcb pe J. (17)

The two terms on the right hand side are: {Zj 1 pc“} the inferred effective number of examples 7 that
belong to class ¢; and pM.J, the expected number of examples in class ¢ if the probability were indeed
pc .

USING THE GRADIENT VECTOR
The gradients above could be used by generic gradient-based optimisation algorithms. Alternatively,
computational methods known as re-estimation methods! use this gradient information in the following
way: the classifications p,|; are computed using the current parameters U; then keeping those assign-
ments fixed, the parameters u® are adjusted (in a single step, or several steps) so as to improve the
fit of component ¢ to its assigned points. For one sub-class of re-estimation algorithms known as E-M
algorithms (Expectation-Maximization) there is a convergence proof for this procedure. See also the
paper by Neal and Hinton for generalizations of these methods.

For computational purposes one can evaluate derivatives like (16) in time less than O(JC) by
omitting the terms where p,, is below some numerical threshold. The probable classes ¢ for an
example (™) can be efficiently identified by the use of data structures such as k-d trees (Lewicki 1994).
A stochastic re-estimation method used by Lewicki (1994) randomly assigns each example n to just
one of the classes ¢, with probability given by p.,; the parameters of class ¢, u® are then optimized as
if its randomly assigned members belong to class ¢ with certainty.

Curvature
Differentiating a second time, we obtain the curvature:

92 J 92]
, ()5 c
G o8 P(FIU, M o) ; [e Pel (Fucaar 08 P(a@’li € ¢, uf) (18)
—}—ilo P(qYj € ¢,u)— 0 -log P(qV |'€cuc))
8110 g .] a g .7 ?

0 J , o
—Pc|jpc'|ja?logP(|]€C u)a logP(|]ECl’u)]

In problems where most of the examples j are firmly classified (i.e., for most j there is one ¢ such p,|; ~
1), the first of these three terms will dominate, and the other two may be negligible for computational
purposes.

The curvature is a measure of how well determined the hyperparameters U are by the examples.

If there are symmetries in the model, for example, the components of the mixture have the same
computational form, then the probability (11) will have multiple maxima. If one is fortunate, then these
maxima may all be symmetrically related to each other, and the predictions obtained by integrating
over a single maximum are equivalent to those obtained by integrating over the entire space. But in
general, a mixture model may have more than one set of maxima. If this is the case, it is desirable
to locate a representative of each distinct set (by incorporating a random element into the search

! Ask Radford if this is acceptable terminology. Or would ‘carpet jumping algorithms’ be better?

algorithm, say). Having found distinct optima, we evaluate the posterior probability associated with
each one by integrating over the local parameter space U, and multiplying by the appropriate symmetry
factor. When performing this integral approximately, the curvature evaluated above is likely to be
useful. Subsequent inferences are obtained by integrating together the predictions of the optima, each
weighted by the probability associated with it. The same integrated probability is also used to compare
the optima of the fitted mixture model with alternative models, either mixture models with a different
number of components C', or models of other forms.

6 A componential density model

Do we believe in mixture models? We might believe ‘small/large’ and ‘hydrophobic/hydrophilic’ to be
two relevant attributes of an amino acid. A mixture model would have to use four categories to capture
all four combinations of these binary attributes, whereas only two independent degrees of freedom are
really present. This prior expectation might motivate a combinatorial representation of underlying
variables.

Geoff Hinton (personal communication) pointed out that a mixture model does not capture the
componential nature of a context. A particular column of our alignment might consist of ‘small
hydrophobic’ residues, another might consist of ‘small hydrophilic’, and so forth. The categories ‘small’
and ‘hydrophobic’ should not therefore be represented as exclusive clusters; but this is what a mixture
model does.

We are therefore interested in componential models, that is, models that assign a density over q
that is indexed by hyperparameters x that are components in a space of context types.

We are therefore interested in componential models, that is, models that assign over q a density
indexed by a vector of latent variables x that are components in a space of context types. If the
reader is familiar with factor analysis, then a rough analogy may be helpful: componential modelling
is like a non-linear factor analysis appropriate to the probability simplex. Factor analysis should be
contrasted with principal components analysis, which blah blah (GH pc). The construction in terms of
eigenvectors and eigenvalues is not needed, nor is the artificial notion of orthogonality. PCA is obsessed
with high variance but what is of interest is opportunities to capture regularities, i.e. correlations
between observables. I will develop a full probabilistic model which can be objectively compared with
other models (such as the Dirichlet model or mixture model) by evaluating the evidence. The evidence
will also be used to infer automatically the most probable dimensionality of the componential model.
The density in the particular models studied here will correspond to a Gaussian in {log ¢;} space, but
it will be straightforward to generalize the model to more complicated low-dimensional densities over
q-

The density network (?) models probabilities q as coming from a non-linear manifold parameterized
by latent variables. This model can also be used to capture correlations between probability vectors,
but here it is used in its simplest form with only one probability vector. Performs a well-defined factor
analysis of the probability vectors.

Denoting the hidden vector by x, and the observable output vector by q, the task is as follows:

Assume that q depends on x, and that all we can observe are examples of q. Deduce
the nature of the x and the dependence of q on x, so as to create a model for the density

P(q).

To be precise, in this particular paper I will furthermore assume that q itself is not observable, but
is measured indirectly through measurements {F}. If q lies in a high dimensional space, it is possible
automatically to infer whether the observed distribution of q might be explained by a lower dimensional
distribution. We will be able to do this without explicitly limiting the dimensionality of x. As usual,
this ‘complexity control’ will be an automatic feature of Bayesian inference.

The model

We define the ‘hidden components’ of q to be a vector x indexed by h = 1...H. The dimensionality of
this hidden space is H but the effective dimensionality may be smaller, as some of the components zp,
may be effectively unused by the model. I introduce a matrix w that defines the relationship between
the hidden components and the observable probability. For each context j, there is a single unknown
vector x?/ which defines the probability qy; thus:

. 1 .
(e — _ . E opd . 1
q2|] (X 3 “) Z(X];) exp (- WipTy, + wzo) y (9)

where
Z(Xj; w) = Z exp (Z wihxi + wio) . (20)
7 h

In order to define a probability distribution on q, we must assign a value to w, and a probability
distribution to x. There is some redundancy in the parameterization w and the prior on x. For example,
if the distribution over x is modelled as a normal distribution with diagonal covariance matrix &, then
we can obtain an identical distribution over q by setting £ to the identity matrix and rescaling each
parameter w;;, by an appropriate factor. For this reason, I fix this distribution to be a unit Gaussian
and just adapt the parameters w to the data. There is nothing special about the choice of a Gaussian.
A non-Gaussian distribution would be equally easy to handle with the Monte Carlo algorithm that
follows; indeed the evidence could be used to infer the most appropriate distribution on x.

We could create fancier distributions over q by defining q to be a more complex (‘multilayer’)
function of the hidden variable x.

Our tasks are:

1. Given w, and data F|; for a particular context j, to infer x’ (the hidden components of the
context) and predict the probability of ‘the next ¢’.

2. Given data {F|;} for many contexts j, to infer w.

These tasks define two levels of inference. To solve the second task we will need to find the normalizing
constant from the first.

For a few equations that follow I will make explicit the conditioning assumption H¢, which denotes
the form of componential density model, and the assumption that the hidden vectors x? are independent
from one j to another.

Level 1

We start by assuming particular values for w and £. The posterior distribution of the hidden compo-

nents is:)]

P(F|]’|X], w, %C)P(X”?‘lc)
P(F|] |w, ,HC)

P(xI|F|;, w, Hc) = (21)

The likelihood P(F|j|xj,w,7-lc) measures how well the model with its parameters set to w predicts
the observed counts:

I
P(Fj|x7,w, Ho) = [] ai(x; w) Ll (22)
=1
The predictive distribution (the probability of ‘the next ¢’) is obtained by integrating over x:

P(ilFy;, w, Ho) = /de P(x[Fyj, w, Ho)g:(x; w) (23)

It may be useful to notice that this integral can be written as a ratio of ‘evidences’ (on which more
later). If we define F‘;Z to be the vector of counts with count 7 incremented by one, then we can write

(using P(A|B,C) = P(AB|C)/P(B|C)):
P(F}|w, He)

PR D= B o)

Level 2

We now wish to infer w given data {F|;} for many different contexts j. The inference is:

P({F|]}|W7%C)P(W7%C)
P{F;}[Hc)

I will leave out the conditioning assumption H¢ for the rest of the section, but note here that in order
to compare this model with other density models, we would want to evaluate the normalizing constant

P{Fj}Hc).

The data dependent term in (24) separates into a product of factors, each of which is a normalizing

P(W7€|{F|]}7,HC) = (24)

constant from equation (21):
J
P({F;}lw, Ho) =[] P(Fjlw, Ho)
]:

= H/dH qu xﬁ7 |1P(X|7-lc)

<

Now the task is to evaluate the derivative of these evidence terms with respect to w. Let us ignore for
the moment the question of the prior on w.

When we maximise the evidence over w, our model will, as if by magic, create a componential
model for the density over q. If the vectors q do lie in a simple low-dimensional subspace, then the
evidence maximization will automatically discover this; the parameters w will adjust themselves so
that the appropriate number of degrees of freedom in x are used.

For brevity, the fixed assumptions H¢ will be omitted here, and I define

Lj(w) = log P(F|;lw) and L(w ZL (25)
and write:
P(F|w) = /d x exp(G;(x; w)) P(x) (26)
where
Gi(x;w) =Y Fijjlog gi(x; w). (27)
We now evaluate the derivative of the log evidence term.
J 1 0
L. — a7 . (s P (aee
G) = ey [4 G 6w) P 5w
This final derivative is easy to evaluate:
J
MG]‘(X;W) = <F|J Fiqi(x; W)) Tp. (28)

Evaluation of the evidence and its derivatives using a simple Monte Carlo algorithm

The evidence and its derivatives with respect to w both involve integrals over the hidden components
x. For a hidden vector of sufficiently small dimensionality, a simple Monte Carlo approach to the
evaluation of these integrals might prove effective.

Let {x("}% | be random samples from P(x). Then we can approximate the log evidence by:

Lw) = Zlog/de exp(Gj(x; w))P(x)

1
S zj:log [E;exp((}j(x(r);w))] .
Similarly the derivative can be approximated by:

O o) = erexp@j(xm;w» (Fyy — Fia:(xsw)) o).
Jw;p, & S exp(G(x();w)).

J

This expression can be simplified by introducing the quantities:

exp(G; (x(r); w)
> exp(G(x(); w))

The quantity b,; is like a posterior probability over the vectors r. We obtain:

SoLiw) = 33 b (Foyy — Frxsw)).
J r

J

brj = (29)

0

ow;p,

A rough scaling law for the number of samples needed

The Monte Carlo method will fall down badly if, given any one data example F;, the posterior dis-
tribution over x does not receive any representation among the random samples {X(T)}. If the output
probability vector is well determined, then the volume of the posterior bubble in x space will be of

order ./1/F]-D where the exponent D is the min of (/ — 1), the dimension of the output space, and
the dimension of the hidden space, H. The Jacobean between x and q is treated as a constant here.
Thus the number of samples drawn randomly from the prior must scale at least as FJ-D/Q. This scaling
law does not take into account the wonderful adaptiveness of neural nets, however, which may make it
possible to get by with fewer samples. If a density net is trained with a very small number of inputs
R, it can adjust its weights w so as to make best use of them.

Notice that the algorithm has no difficulty scaling with increasing numbers of examples J.

This simple Monte Carlo algorithm is therefore best when there are lots of examples, for each of
which q is not very well determined.

Some practical details

Computation time can be saved by omitting from the gradient calculations points with small b,; that
are expected to make negligible contribution. In these demonstrations I omitted the terms rj with
b,; < 1/(100R).

The algorithm was implemented by evaluating the evidence and its gradient and feeding them into
a conjugate gradient routine based on the frprmn code in Numerical Recipes. The random points
{x(r)} were kept fixed, so that the objective function and its gradient were not noisy quantities during
the optimization.

16 T T T T

e T3 M e
- e 2 —+- 7
14+ B A o 3 -
% 4 %
12 F =4 T 10 F 5 A
o SV 6 -
6 -o--
L 7+
10 8 -&- 8 - b
9 »—
8 10 -a-- -
6 4
6 i «——Dirichlet
Al < Dirichlet | ar 1
2+ B 2r b
0 1 1 1 0 1
a) 10 100 1000 b) 1000

Figure 1: Toy examples. Estimated evidence.
Log evidence (y axis) is shown as a function of R (number of Monte Carlo samples, z axis), for models with
different numbers of hidden components (H between 0 to 7).
The evidence for the optimized Dirichlet model is also marked. All values are log evidences relative to the null
model Hg.

a) Toy example number 1. b) Toy example number 2.

More efficient evaluation of the evidence using importance sampling

If we create a sampling distribution ¢;(x) that is similar to the posterior distribution P(x|F;) then the
evidence integral can be approximated in terms of {x(r) R |, which are random samples from Q(x).:

Liy(w) = log/dHX exp(G;(x; w)) P(x)

s[4 oG £

Later, I use this expression to evaluate accurately the evidence for a model that has been adapted

by the simple Monte Carlo method above. The sampling distribution ¢);(x) is set to a Gaussian with
mean X; and diagonal covariance matrix ¥; obtained from statistics returned by the simple algorithm.

7 Examples

In the following examples I compute the log evidence ratio for the model relative to a null model, Hy,
that states that q is the same for all examples. This model is optimised by setting q = q, defined by
¢ = F;/F. A density network with H = 0, i.e., no hidden inputs, is identical to Ho.

The new model is also compared with a Dirichlet model which models the probability distribution
over q as coming from a single distribution. This is not a componential model. The Dirichlet model
has I free parameters which are optimized by evidence maximization as discussed in (?).

Toy problems

I created two toy data sets corresponding to sets of dice from two unrelated factories. In each data set,
six five-sided dice were rolled a few times giving the data shown in table 1.

The data in TOY 1 has been constructed to show a roughly one-dimensional underlying component
in the data, with some dice appearing to favour small values of ¢ and some large values. In TOY 2
wrap-around has been added, so that a human might infer that the vectors q seem to lie in or on a
circle, requiring two real dimensions.

10

TOY 1 TOY 2

ill 2 3 4 5 i1l 2 3 4 5
J J

1 5 2 0 0 0 1 5 2 0 0 1

Data 2 2 3 1 0 0 2 2 3 1 0 0

3 05 3 0 0 3 0 5 3 0 0

4 01 2 4 1 4 01 2 4 1

5 001 3 4 5 0 01 3 4

6 1 1 1 1 1 6 2 0 0 2 3

Inferrrred parameters ONE HIDDEN COMPT. TWO HIDDEN COMPONENTS TWO HIDDEN COMPOL!

¢t Bias Input 1 ¢+ Bias Input 1 Input 2 ¢t Bias Input 1 Input 2
1 -0.45 2.62 1 -0.53 -1.79 1.92 1 -0.09 -1.09 -1.22
2 0.86 1.59 2 0.87 -1.42 0.62 2 0.18 -1.32 0.87
3 0.72 0.09 3 0.72 -0.48 -0.29 3 -0.09 -0.48 1.20
4 -0.26 -2.10 4 -0.16 1.44 -1.07 4 -0.12 1.51 -0.10
5 -1.11 -2.78 5 -0.94 2.05 -1.14 5 0.07 1.18 -0.70

Table 1: Parameters of models for the ToY problems

The simple Monte Carlo algorithm gave the results illustrated in figure 1, as H and R were varied.
The graphs show the evidence as a function of R. Notice that for R greater than 10 or so, the evidence
value settles down, and increasing R makes negligible difference.

In the case of data TOY 1, as H is increased beyond 1, the evidence does not become either
substantially larger or substantially smaller, even when the hidden vector has a dimensionality bigger
than the dimensionality of the output space. This means that the model is finding a density of effective
dimensionality about 1. There is apparently no overfitting problem.

In the case of data TOY 2, the results are similar, except that the model with a two-dimensional
componential representation is significantly more probable than the one-dimensional density network.

One way to understand what a model is doing is to look at its parameters (at least for small H).
Table 1 shows the parameters for the nets with H = 1 and H = 2, ordered from ¢z = 1 to 5 vertically
(c.f. horizontal in the data table earlier). Notice that the weights from the inputs in the TOY 1 cases
capture the one dimension apparent to the human eye. When there are two inputs, the weight vectors
for those inputs are not orthogonal; they are virtually identical (except for a change of sign). This
similarity of the vectors of weights from the two inputs produces a low effective dimensionality in the
output space.

When it is adapted to the TOY 2 data set, the parameters of the density network with two hidden
components are very different. The two vectors over ¢ are here virtually orthogonal, so that a fully
two-dimensional distribution is produced in the output space.

Amino acid probabilities in aligned protein families

Figure 2 shows the estimated evidence, for J = 60 examples, each with a count of F; ~ 177. Clearly
many Monte Carlo samples are needed for a convergent estimate of the evidence.

The evidence for the Dirichlet model is also displayed. According to these results, a componential
model with 13 components is more probable than the Dirichlet model.

8 Application of mixture model to amino acid data

Here are some raw results on the probability of Dirichlet mixture models with increasing numbers of
components. For each run a random start was used, with each 1 = log u vector being given a random
value drawn from a Gaussian. One mixture component was initialized to a smaller « value than the

11

12500 ———————ry ———
12000
11500
11000 ': ;55’2

10500 | ..~

Figure 2: Amino acid modelling.
Estimated evidence, as a function of R (number of Monte Carlo samples, z axis), for models with
different numbers of hidden components (H = 3 to 15).
The evidence for the optimized Dirichlet model is also marked. The evidence for other tradi-
tional Dirichlet models can also be reported: log P(D|u = (1,1,...,1)) = 10894.5; log P(D]u =
(.05,.05,...,.05)) = 11356.7.
All values are log evidences relative to the null model Hg.

others to make the anticipated ‘twiglets’ component. The amino acids are given in ‘alphabet’ order.
For each mixture component, the probability pM is given, and then the values of o and u.

#c plc] alpha alani cyste aspar glutt pheny glyci histi isole lysin leuci methi aspar proli
1 0.271 0.412 0.034 0.031 0.036 ... it i e e e e
2 0.275 2.18 0.207 ..ot ittt i e e e e e e e 0.156
3 0.030 18.6 0.749 1.288 9.667 oL 1.202 ... Lo ool oL
4 0.017 23.4 1.677 .o ittt ittt v e e e e 0.565 14.18
5 0.037 8.79o il e 3.001 0.343 0.535l
6 0.118 2.35 i i e e e e 0.531 0.494 0.179
7 0.010 19.3 i i e e e e 3.291 1.128 ... Lo oL
8 0.004 19.6 1.321 1.241 ... Ll 1.819 ..., ..o oL
9 0.009 20.2 2.323 ... oo cee e 2.548 1.708, ...,
10 0.079 9.06, 0.720 il e 0.937 0.670
11 0.021 29.8 1.336t i i e e e R
12 0.049 16 e e 0.758 3.397 3.832 0.781
13 0.009 32.7 1.197 oo el 1.404 ..., ... oo oo o 18.15
14 0.013 34 l 0.817v i i e 0.906,
15 0.010 22 10.90 ... Lo ol ol 1.703 ... oo oLl 0.917,
16 0.033 35.1 il e 1.394 1.647 24.44 1.235
17 0.002 15 ... i i e e e e e 0.916 1.443
18 0.006 25.8 2.357 i i i e e e e 2.193 ... a0 ol

9 Discussion

Here I have cut a major corner by doing maximum evidence (maximum likelihood) fitting of the
hyperparameters. This means that the Occam factors for models with excessive numbers of components

12

are not included, and there may be a potential overfitting problem.

The advantages of a fully Bayesian attitude to data modelling are, firstly, that one is forced to
make all one’s assumptions explicit; and secondly, that once the model is defined, all inferences and
predictions are mechanically defined by the rules of probability theory.

There are two major omissions in the models for amino acid probabilities. The first is that the
evolutionary relationship between the inidividuals in the data have been ignored. The different amino
acid observations in one column have been viewed as independent rolls of a die belonging to that
column, whereas actually they constitute the leaves of a tree and are therefore not independent. The
second omission is also to do with evolution. The amino acids are coded for by codons in DNA, and the
amino acid in any one column has changed because the underlying codon has mutated. Our knowledge
of the genetic code can give us an a priori model for the amino acids in the evolutionary tree of one
column. Evolutionary effects are certainly present in the data studied here. If, for example, we count
the number of times that an amino acid couplet consists of two amino acids that are neighbours in the
genetic code (i.e., could intermutate with just one nucleotide change)

A Toolbox

The Gamma function

The Gamma function is defined by ['(z) = [;° du v te™™, for > 0. In general, ['(z + 1) = 2T'(z),
and for integer arguments, I'(z 4+ 1) = z!. The digamma function is defined by ¥(z) = £ logT'(z).
For large z (for practical purposes, 0.1 < z < c0), the following approximations are useful:

log I'(z) ~ (x - %) log(z) — & + L log 2m + O(1/z) (30)
d 1 9
U(z) = %log ['(z) ~log(z) — o +O0(1/27) (31)
And for small z (for practical purposes, 0 < z < 0.5):

1
log ['(z) =~ log — — v.x + O(z?) (32)

x

1

V(z) > —— =7+ O(2) (33)

where v, is Euler’s constant. The digamma function satsfies the following recurrence relation exactly:

Wz +1) :\Il(:v)—}—%. (34)

Looking at the evidence again

It is interesting to approximate the evidence term appearing in (8) so as to see what properties it has.
Using approximations for large u; from appendix A, we obtain for a particular j:
[LT(E);+am) (o)

P(Fj+e) LT (em:)

log P({F;};}|lam,Hp) = log

—|—04mZ 1 F;+a

~ Zﬂljlog@m}—l—Zamilo ?z|y _ 21 —I—§10g

This decomposition of the evidence bears a detailed comparison with the evidence for interpolation
and image reconstruction (Gull 1989, MacKay 1992). The first term is the “best fit log likelihood”,
achieved when the parameters ¢;|; are set to the posterior mean. The second term is the “best fit prior
cost”, measuring the distance of the best fit parameters from the null prior parameter value. The final
terms are the “log volume factor” measuring how much the parameter space collapses when the data
arrive. There are J negative terms and 1 positive term, corresponding to the collapse in the J — 1

dimensional parameter space qj;.

13

References

D. J. C. MacKay (1992). Bayesian interpolation, Neural Computation 4(3): 415-447.

M. Lewicki (1994). Bayesian modeling and classification of neural signals, Neural Computation
6(5): 1005-1030.

R. Hanson, J. Stutz and P. Cheeseman (1991). Bayesian classification with correlation and inheritance,
Proceedings of the 12th International Joint Conference on Artificial Intelligence, Sydney, Australia.

S. F. Gull (1989). Developments in maximum entropy data analysis, in J. Skilling (ed.), Mazimum
Entropy and Bayestan Methods, Cambridge 1988, Kluwer, Dordrecht, pp. 53-71.

I thank Radford Neal, Geoff Hinton, Tim Hubbard, Sean Eddy and Graeme Mitchison for helpful
discussions.

[thank Peter Brown, Radford Neal, Geofl Hinton, Phil Woodland, David Robinson, Martin Oldfield,
Steve Gull, John Bridle and Graeme Mitchison for helpful discussions, and the Isaac Newton Institute
for hospitality.

14

