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Abstract

This is a case study of the use of Monte Carlo methods to evaluate normalizing constants. I
describe the trials and tribulations of importance sampling and of variational free energy approaches.
The results are for a small model with just one latent variable.

More efficient evaluation of the evidence using importance sampling

If we create a sampling distribution Qj(x) that is similar to the posterior distribution P(x|F;) then the
evidence integral can be approximated in terms of {x(")}£ | which are random samples from Q(x).:

Li(w) = log/de exp(G(x; w))P(x)

~ log [% ;exp(Gj(x; w))%

Later, I use this expression to evaluate accurately the evidence for a model that has been adapted
by the simple Monte Carlo method above. The sampling distribution Q);(x) is set to a Gaussian with
mean X; and diagonal covariance matrix ¥; obtained from statistics returned by the simple algorithm.

The simple Monte Carlo algorithm gave the results illustrated in figure 4, as H and R were varied.
The graphs show the evidence as a function of R. Notice that for R greater than 10 or so, the evidence
value settles down, and increasing R makes negligible difference.

In the case of data TOY 1, as H is increased beyond 1, the evidence does not become either
substantially larger or substantially smaller, even when the hidden vector has a dimensionality bigger
than the dimensionality of the output space. This means that the model is finding a density of effective
dimensionality about 1. There is apparently no overfitting problem.

TOY 1 | TOoY 2 |
i1 2 3 4 5 i1 2 3 4 5
J J
1 5 2 0 0 0 1 5 2 0 0 1
Data 2 2 3 1 0 0 2 2 3 1 0 0
3 0 5 3 0 0 3 0 5 3 0 O
4 01 2 4 1 4 01 2 4 1
5 0 01 3 4 5 0 01 3 4
6 1 1 1 1 1 6 2 0 0 2 3

Table 1: Parameters of models for the TOY problems



plain importance sampling +— plain importance sampling +— plain importance sampling +—
6.4 4 T3 ] 125 F 4
735 | /\ 1
s6l B 12| El

u = 74 v 1
sl sl sl [Treea 1

st 1 ut 1
2t i
755 1
105 | |
T2 . . . . 1 s . . . . . . . . . .
10 100 1000 10000 100000 1e+06 10 100 1000 10000 100000 1e+06 10 100 1000 10000 100000 1e+06

Figure 1: Toy example. Individual evidences (cols 1 and 2), and sum for all 6 data (col 3).
Log evidence (y axis) is shown as a function of R (number of Monte Carlo samples, z axis). Top line = plain
importance sampling results.
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Figure 2: Toy example. CAUCHY importance sampler. Individual evidences (cols 1 and
2), and sum for all 6 data (col 3).

Log evidence (y axis) is shown as a function of R (number of Monte Carlo samples, = axis). Top line = plain
importance sampling results.



62 T T T T T 725 T T T T T T T T T
plain importance sampling -— plain importance sampling ~— plain importance sampling ~—

64 4
735 1 /\ 4
; 12 4

66 4
U ™ \[ 1
115 b 4

68 e 7.45 1 e
75+ R pryn 4
7t 4
755 | e
108 e
72 4
. . . I . i 76 b . . I . . . I . .
10 100 1000 10000 100000 1e+06 10 100 1000 10000 100000 1e+06 10 100 1000 10000 100000 1e+06
T T T T T T T2 T T T T T LT [ T T T T T
best gaussian importance sampling +— est \ce sampling_->— best gaussian ce sampling —
65 bound —+-_| 74 bound 1.4 bound -
76 e 11.39 e
78 e 11.38 e
7t 4
8 e 1137 e
82 B 11.36 B
L 4 le
s 84 e 11.35 e
86 El 1134 e El
8 4 88+ e 133 4 R
¥
. . . I . . gl . . I . 1132 b . I . .
10 100 1000 10000 100000 1e+06 10 100 1000 10000 100000 1e+06 10 100 1000 10000 100000 1e+06
: : : T T : REr= : : T T : 2 T T T T
doutle width gaussian +— doyli yidh gassian Pasge N car
65| bound ~+— _| 74 bound —— | 1 zf‘\[ bound ~—_|
oy
~ 7
~ 10 -

10 100 1000 10000 100000 1e+06 10 100 1000 10000 100000 1e+06 10 100 1000 10000 100000 1e+06

best cauchy importance sampling — best cauchy importance sampling — best cauchy importance sampling —

64| 4
7.35 1 M B
12 B

66| oy i
T4 4 M
68 e 7.45 1 i s - i
75+ - pryn 4
7 4
755 | 4
1085 e
72 4
. . I . i 76 . . I . . . I . .
10 100 1000 10000 100000 1e+06 10 100 1000 10000 100000 1e+06 10 100 1000 10000 100000 1e+06
62 : : : T T REr= : : : : : : T T
double width cauchy -e— double width cauchy +— double width cauchy +—
73+ El L 4
6l i 125
7.35 F B
ey - 74t w" 4
68| B 745 El s = o |
75 - pran 4
2t 4
7.55 4
105 e
T2 . . . . 1 26 i . . . . . . . .
10 100 1000 10000 100000 1e+06 10 100 1000 10000 100000 1e+06 10 100 1000 10000 100000 1e+06

Figure 3: Toy example. Various samplers, well optimized. Individual evidences (cols 1 and

2), and sum for all 6 data (col 3).
Top line: plain importance sampling results. 2: Optimized gaussian. 3: Gaussian of double width. 4: Cauchy.
5: Cauchy of double width.
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Figure 4: Toy examples. Estimated evidence.
Log evidence (y axis) is shown as a function of R (number of Monte Carlo samples, x axis), for models with
different numbers of hidden components (H between 0 to 7).
The evidence for the optimized Dirichlet model is also marked. All values are log evidences relative to the null
model H,.
a) Toy example number 1. b) Toy example number 2.

In the case of data TOY 2, the results are similar, except that the model with a two-dimensional
componential representation is significantly more probable than the one-dimensional density network.

One way to understand what a model is doing is to look at its parameters (at least for small H).
Table 1 shows the parameters for the nets with H = 1 and H = 2, ordered from ¢ = 1 to 5 vertically
(c.f. horizontal in the data table earlier). Notice that the weights from the inputs in the TOY 1 cases
capture the one dimension apparent to the human eye. When there are two inputs, the weight vectors
for those inputs are not orthogonal; they are virtually identical (except for a change of sign). This
similarity of the vectors of weights from the two inputs produces a low effective dimensionality in the
output space.

When it is adapted to the TOY 2 data set, the parameters of the density network with two hidden
components are very different. The two vectors over ¢ are here virtually orthogonal, so that a fully
two-dimensional distribution is produced in the output space.

Amino acid probabilities in aligned protein families

Figure 5 shows the estimated evidence, for J = 60 examples, each with a count of F; ~ 177. Clearly
many Monte Carlo samples are needed for a convergent estimate of the evidence.

The evidence for the Dirichlet model is also displayed. According to these results, a componential
model with 13 components is more probable than the Dirichlet model.

(c) David MacKay
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Figure 5: Amino acid modelling.
Estimated evidence, as a function of R (number of Monte Carlo samples, z axis), for models with
different numbers of hidden components (H = 3 to 15).
The evidence for the optimized Dirichlet model is also marked. The evidence for other tradi-
tional Dirichlet models can also be reported: log P(Dju = (1,1,...,1)) = 10894.5; log P(Dju =
(.05,.05,...,.05)) = 11356.7.
All values are log evidences relative to the null model #y.



