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Abstract

Given that a learning algorithm achieves a training error ε̂M on its
training set, what do we expect its test error to be?

This is an inference problem (“Given A, predict B”) so it must have
a Bayesian answer. This note discusses the forward model and prior re-
quired to get sensible answers.

Let’s take ‘machine learning’ to mean ‘fitting a parametric or nonparametric
model to data in order to make predictions’. The main activity of Bayesians in
machine learning between 1990 and 2004 has been based on viewing machine
learning as probabilistic modelling. We take the probabilistic model literally, as
a model of the process that generated the data; then we use Bayesian inference to
implement learning and prediction. This perspective has allowed researchers to
(a) automate complexity control; (b) enhance the specification of the machine
learning model by constructing models more in accordance with the sort of
assumptions we wish to make about the data; (c) produce better predictions
by using the Bayesian concept of marginalization. All these enhancements of
machine learning depend on the assumption that we literally believe in the
model.

An alternative attitude to the model, however, is to think of it as a black box
having no relation to the process generating the data, or our beliefs about that
process. The sort of question one might then ask is, ‘Given that this optimized
black box produced a training error of εt, what should I expect its test error to
be?’

This is a question in approximation theory, and it is an inference problem.
(Notice the form of the question, ‘given . . . , predict . . . ’.) Thus it is a question
that should be addressable in Bayesian terms. I think Wolpert (1995) was one
of the first to spell out such a Bayesian approach to approximation theory.

Most of the work in approximation theory has used a sampling theory ap-
proach (Valiant, 1984; Vapnik, 1995), delivering bounds on the generalization
error that are likely (in the sampling theory sense) to be true.

This note explores a Bayesian approach to the question of predicting test-set
error. The motivations for a Bayesian approach are (a) to better understand
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the assumptions required to make reasonable predictions of test error; (b) to
obtain predictions that take all available information into account, given a set of
assumptions. (One of the bizarre properties of sampling theory bounds on test
error is often the bound takes an impossible value, such as an error rate greater
than 100%.) For thorough prior work on Bayesian approximation theory, see
Scheffer and Joachims (1998).

To make a Bayesian model to infer test error from training error, we need
two things: a forward model from test error to training error; and a prior on
test error.

1 A simple approach to classification error

Let’s start with a simple and crude model. The learner is assumed to have
available to it 2C distinguishable parameter-settings indexed by w, where we
will call C the capacity of the learner. Given a choice of w, the learner produces
a binary prediction y(w) that depends on input variables somehow, and the
teacher provides the target, t. We’ll assume every learner has a true test error
ε(w) which is the probability, averaging over all inputs, that y(w) is not equal to
t.

For simplicity, we’ll assume that the errors of all learners are independent of
each other and do not depend on the input. (Certainly a bad assumption, but
one that allows us to focus on the interesting issues.)

Having made these assumptions, all the remains is for us to write down the

forward model that maps from the true test errors {ε(w)}2C

w=1 to the training

error on a training set of size N ; and to define a prior on {ε(w)}2C

w=1.
The forward model is simple: all 2C settings of w make independent errors

at their own independent rates {ε(w)}2C

w=1. For each w, the number of errors rw

has a binomial distribution.

P (rw | ε(w), N) =

(

N

rw

)

ε(w)rw

(1 − ε(w))N−rw . (1)

The training error can be defined to be

ε̂(w) ≡
rw

N
. (2)

Attention will shortly focus on a couple of parameter settings, w? and wM,
which are respectively the w whose test error ε? is actually the smallest of all,
and the w with smallest training error, which we assume is returned by a learning
algorithm. But for a moment let’s imagine we’ve enumerated all settings of w
and found their training errors.

It’s interesting to note that to obtain any of the standard results of approxi-

mation theory, it’s going to be essential to assign a non-trivial prior P ({ε(w)}2C

w=1).
If we were to assign a simple separable prior, for example, then our inference
about the test error of any one classifier would depend only on its own training
set error, and its own prior. There would be no dependence on the capacity
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Figure 1: Schematic diagram of test errors (below) and training errors (above)
for all 2C parameter settings.

C of the learner. In contrast, experience and sampling theory both lead us to
expect that the test error of the optimized parameters wM will be greater than
its training error ε̂M by an amount that depends on the capacity C: bigger
capacity, bigger overfitting, so bigger gap.

What prior on test errors will reproduce this reasonable intuition?

1.1 Simple model with one hyperparameter

Let’s couple the {ε(w)}2C

w=1 together by introducing one hyperparameter ε?,
which, as defined before, is the error rate of the best classifier.

And to make things really simple, we’ll assume that there exist almost 2C

other settings of w that have almost the same value of ε.
Then the distribution of ε̂M is the distribution of the smallest of 2C draws

from a binomial distribution. Assuming that C and N are large, and making
back-of-envelope approximations, we find the following forward model from ε?

to ε̂M: given ε?, the typical expected value of ε̂M is the one that satisfies:

ND
(2)
KL(ε̂M, ε?) = C, (3)

where

D
(2)
KL(p, q) = p log2

p

q
+ (1 − p) log2

(1 − p)

(1 − q)
. (4)

Here, for brevity and clarity, I haven’t worked out the distribution of ε̂M given
ε?, C, and N : just its typical value. Working out the distribution (which plays
the role of the likelihood function) is on the to-do list.

Figure 2 shows graphs of ε? as a function of ε̂M for various values of the ratio
C/N .

Now, equation (3) has already appeared in the ‘bounds’ literature: it’s in
John Langford’s PhD thesis, chapter 1.
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Figure 2: Simple model of dependence of training error on test error, as a
function of the capacity-to-data ratio C/N .

1.2 More models

The above model is in a sense a worst-case model. It assumes that a huge
number of models have the same test error as the best model – which sounds
like good news, but it’s bad news. If lots of models have the same test error
ε?, then there is a good chance that one of them will have training error much

smaller than ε?. So we have a huge gap between the observed best training error
and the inferred test error.

A more reasonable model may be one that asserts that there are quite a lot
of parameter settings with test error close to ε?, but not as many as 2C . We
can introduce a curve C(ε) and define the number of learners as a function of
test error ε to be

2C(ε). (5)

C(ε) must satisfy the constraint

∑

ε

2C(ε) = 2C . (6)

Now, each sub-population of learners with test error ε gets 2C(ε) chances to
achieve the winning training error. The typical best training error achieved
by sub-population ε is given by ε̂M(ε), which is given by the constraint (cf.
equation (7))

ND
(2)
KL(ε̂M(ε), ε) = C(ε). (7)

4



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.05  0.1  0.15  0.2

te
st

train

0.2
0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

Figure 3: Second model of dependence of training error on test error, as a
function of the capacity-to-data ratio C/N .

To obtain our forward model from C(ε) to ε̂M we need to maximize ε̂M(ε).
To make further progress, I introduce a single-parameter family of curves

C(ε). The one free hyperparameter is ε?, the best possible test error.

C(ε; ε?) = CH2

(

(ε − ε?)/2

1/2− ε?

)

. (8)

I have little justification for this curve. Cases can certainly be imagined where
C(ε) will be very different.

Now using
∂

∂p
DKL(p, q) = log

p

1 − p
− log

q

1 − q
(9)

and
∂

∂q
DKL(p, q) =

q − p

q(1 − q)
, (10)

the second constraint that pins down the forward model is

N
ε − εM
ε(1 − ε)

=
∂

∂ε
C(ε; ε?) = C log2

1 − ε? − ε

ε − ε?

1/2

1/2− ε?
. (11)

The resulting curves of typical test error versus typical training error are
shown in figure 3.
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