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Abstract

This note explores whether the lowest dose-rate mortality data
from the beagle tissue archive might be consistent with the Linear
No-Threshold (LNT) Model and might give evidence in favour of
that model. I suggest that the answer may be ‘yes’; further statistical
analysis will be required to establish how strongly the data favour
LNT over alternative non-linear models.

1 The mortality data

A paper by Fliedner et al. (2012) presents interesting data adapted from
Fritz (2002) showing the mortality curves of dogs after whole-body chronic
gamma-irradiation at various dose-rates. These curves have been obtained
from the beagle tissue archive!, which preserves the results of experiments
in which hundreds of dogs were chronically exposed to gamma radiation
for their entire lives Carnes and Fritz (1993). The dose-rates to the whole
body were 3mGy/day, 7.5mGy/day, 18.8mGy/day, 37.5 mGy/day, 75
mGy/day and 127.5 mGy/day, 262.5 mGy/day, 375 mGy/day and 640
mGy/day. A control group received no gamma radiation.

In the high dose-rate groups (540 mGy/day, 375 mGy/day and 262.5
mGy/day), all observed deaths were caused by hemopoietic failure. In the
middle dose-rate groups (127.5 mGy/day, 75 mGy/day and 37.5 mGy/day),
deaths are caused by hemopoietic insufficiency with septicemia and apla-
sia or myeloproliferative disorders and fatal tumours. At dose rates below
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Figure 1: Mortality curves of dogs after whole-body chronic gamma-
irradiation at various dose-rates in cGy/day, adapted from (Fritz 2002).

(FIGURE 3 from Fliedner et al. (2012).)



18.8 mGy/day, and in the control group, a large fraction of the deaths are
from fatal tumours.

The lowest dose rate in the experiment, 3 mGy/day (equivalently 90 mGy/month,
or 1100 mGy/year), is not a “low dose rate” by current health protection
standards (which limit the annual dose of industry workers in the USA
and the UK to 50 mSv/year and 20 mSv/year respectively), but it is lower
than the 100 mSv/month dose rate that has been identified by some critics
of those health protection standards (eg Allison (2009)) as a rough thresh-
old below which radiation might be deemed to have negligible harm to
most humans. Wade Allison also criticises the use of the ‘Linear No
Threshold” (LNT) model of radiation-harm in policy making, and suggests
that there is a threshold, somewhere near a dose rate of 100 mSv/month,
below which the harm from radiation is significantly less than the Linear
No Threshold hypothesis would predict (Allison, 2009).

It is therefore interesting to study the beagle data at the lowest dose
rates of 3mGy/day, 7.5mGy/day, and 18.8mGy/day, and the control
group, to see whether these data seem compatible with the Linear No
Threshold hypothesis, and whether they favour LNT over other models.

I intend to conduct a proper statistical investigation of this question
in due course. This technical note describes preliminary manual model-
fitting to see whether the effects that seem to be present in the data are
roughly consistent with a simple version of the Linear No Threshold model.

Of course, humans are not beagles, and it is not clear how advocates of
the pro-LNT and anti-LNT hypotheses would predict that these hypothe-
ses should be transformed between species with different body masses
and different metabolic rates.

2 The model

I simulated a simple model in which the death of a dog is caused either
“by natural causes” or by a radiation-induced cancer. (This model is not
intended to capture the higher-dose-rate causes of death; it is just a model
for low dose-rates.)

The model Hinr treats the two causes of death independently as fol-
lows.

The probability that a dog is still surviving at age t, in a radiation field
of intensity 7 is:

Palive <t | v, p,q, 7'[LNT) = SNatural (t) X SRadiationInducedCancerDeath (t) (1)



where Snatural () is the probability, in the absence of the radiation, that a
dog would survive at least to time ¢, and SgadiationinducedCancerDeath () iS the
probability, in the absence of natural death, that a dog would not have
died from a radiation-induced cancer by time t.

The natural-death survival function is, as a first stab, a Gompertz—
Makeham function

SNatural(t | a,b, C) = exp (—at — ? (eCt _ 1)) ; (2)

the parameters found to best fit the control-group data were a=0/year,
b=0.0041/year, and c=0.32/year.

The radiation survival function SgagiationinducedCancerDeath (£) Was defined
with a two-parameter model. The body is modelled as the union of a large
number N of compartments, each of which has three states: healthy (1),
pre-cancerous (2), and dead (3). Initially all compartments are healthy.
At every time-step each healthy compartment has a probability of turn-
ing pre-cancerous pi_, that depends on the radiation dose Dt in that

timestep:
Py = A x Dot x % 3)

where A is the dose-sensitivity (essentially the ‘linear” parameter of LNT),
D is the dose rate in Sv per unit time, m is the mass of the animal, and
thus m/N is the mass of one compartment. Pre-cancerous compartments
turn dead with probability

P2—3 = qét' 4)

The two parameters of this model are the dose-sensitivity A and the fatal-
cancer-completion rate g, which is inversely related to the typical latency
between a single radiation-induced mutation and the subsequent death
from cancer. (The probability that a pre-cancerous compartment reverts to
the healthy state was assumed to be zero.)

Given these two parameters, the probability p(t) = (p1(t), p2(t), p3(t))
that a particular compartment is in state (1,2,3) can be computed, and the
probability that the animal has no fatal radiation-induced cancers is

SRadiationInducedCancerDeath ( t) = <1 —p3 <t) ) N/ (5)

where N is the number of compartments. To be clear, the assumption is
that if any compartment is dead, the animal is dead.



2.1 Analytic solution for the radiation survival function

(This subsection can be skipped.)
The three-compartment model can be solved, yielding

ADm
_ __N —qt q — ARy
1 _pS(t) — ADm e T — ADm e N (6)
N 1 N 1
and thus in the limit of large N we can obtain
SRadiationInducedCancerDeath(t) = lim (1 - p3(t))N )

N—oo

exp (—/\Dm [t - 3 (1- e_qt)]) 8)

exp (—/\Dmt + me (1- e—qf)) 9)

exp <—/\Dmt - /\DTm (79 — 1)) , (10)

which looks like a Gompertz-Makeham function (2), except that the sign in the
final exponent e~ 7" here is negative rather than positive.
(End of skippable subsection.)

2.2 Method - part 1

I manually adjusted the parameters A and g to see if the qualitative features
of the raw data could be reproduced — in particular I was interested in
the small gap that the data seem to show between the control group’s
mortality curve and that of the 3-mSv/d group. The gap between the
medians of the curves corresponds to a loss of life of roughly 5% of the
median beagle-lifespan. (I will assess in part 2 the statistical significance
of this gap.)

Roughly what gap would the LNT hypothesis predict?

To answer this question, we need the parameter A. In average adult hu-
mans, the standard LNT coefficient appears to be 0.05 per whole-body-
Sievert. (For example, LNT asserts that an extra dose of 20mSv to the
whole body gives an extra 0.1% chance of fatal cancer.) This implies that
for humans my model’s parameter A should be set to roughly 0.05/Sv /(80 kg)
= 0.000625/Sv /kg, assuming a typical human weight of 80 kg. There may
be a factor of 2 or so of slop in this coefficient, since the LNT hypoth-
esis is often accompanied by a “dose and dose-rate effectiveness factor”



(DDREF) which scales down the coefficient at low dose-rates. (For sim-
plicity, I am assuming here that the fatal-cancer-completion rate g in my
model is big enough that an induced cancer has a good chance of turning
into a fatal cancer within the human’s lifetime. If g is too small for this
assumption to be true then the statements above about the value of A need
to be reworked; for “small” g, the probability of conversion within a pe-
riod T such as the remaining period of life is roughly ¢T, so for “small”
q it is AgT that is roughly equal to 0.000625/Sv/kg. Here, g is “small” if
gT < 1.)

Of course, as I said before, humans are not beagles. If A = 0.000625/Sv /kg
for a human, what should A be for a beagle, whose body mass (10kg) is
8 times smaller than a human’s and whose lifespan (12 years) is about 6
times smaller?

I'don’t know the LNT community’s answer to this inter-species-translation
question, but I imagine that it must lie between the following two hypothe-
ses:

1. All mammals are made of similar tissue, and have similar A; thus
LNT says Apeagle = 0.000625/5v/kg. Note that under this version
of the hypothesis, the probability that a beagle will get fatal cancer
from a particular dose (measured in Sv) is roughly 8 times smaller
than the probability for a human, because a human is essentially
made up of 8 beagles” worth of tissue, and every beagle-sized chunk
has the same chance of contracting a fatal cancer.

2. All mammals are similar, in the sense that they have the same chance
of contracting fatal cancers when subjected to a particular dose in
Sv. This version of the hypothesis asserts that Apeagle is roughly 8
times Anhuman, i€, Apeagle = 0.0050/5v/kg. For this hypothesis to make
sense, one could imagine that the relevant target in the body is DNA
in cell nuclei; if the number of cells is roughly the same in beagles
and humans (see Savage et al. (2007) for the truth, which is tissue-
dependent), and if the amount of vulnerable DNA per cell is also
roughly the same, then the chance of a hit on the target is the same
in both species, even though the beagle is smaller.

To summarise, it seems to me that the translation of the LNT hypothesis
from humans to beagles would imply Apeagle between 0.000625/Sv /kg and
0.0050/Sv/kg, assuming g is not ‘small’.

If the fatal-cancer-completion rate parameter g is material, we could
similarly discuss how it might translate between species. I have the im-



pression that in humans g is believed to be (1/(a few years or possibly
decades)). As above, I could imagine that ¢ might be similar for all mam-
mals (if conversion to a fatal cancer depends on biochemical processes
that are similar in all mammals); or g might be greater in species with
higher metabolic rates and shorter lifespans (if conversion is associated
with metabolic processes that run faster in those species). (Mass-specific
metabolic rate scales approximately as m~!/%4; the scaling of cell turn-over
rate with body mass appears to depend on the cell type, with some turn-
over rates scaling as m~1/% and some scaling as m® (Savage et al., 2007); the
former scaling law would predict a turn-over rate for beagles 1.68 faster

than humans.)

Results — part 1

Figure 2 shows the resulting theoretical curves, alongside an approximate
transcription of the original data, when the parameters are set to g =
1/10.0/year and A = 0.003125/Sv/kg.

The shapes of the mortality curves are not perfectly matched by the
theoretical curves, but the gap between the control group and the 3-mSv/day
group (at 50% mortality) is of the same size as the apparent gap in the data.

This indicates that the beagle results are not grossly at variance with
the LNT hypothesis and indeed might support it. There is a version of the
LNT hypothesis, consistent with the dose-sensitivity for humans, that pre-
dicted a measurable effect at 3mSv/day, of a size similar to the apparent
effect size in the data.

2.3 Method - part 2 — how significant is the apparent gap?

Roughly how much statistical uncertainty is there in these mortality curves,
given the finite sample size? Let’s focus on the identification of the me-
dian lifetime of a population from a finite sample of size K. The proba-
bility density of the rank of the true population-median among K sorted
individuals drawn from a population is bell-shaped with a standard de-
viation of roughly %\/K so the vertical error bars on the median point of

a mortality curve (such as in figure 1) are %\LR The 3-mSv/day group
had size K = 92 and the control group had K = 57. The vertical error

bars are thus %\LR = 0.052 and 0.066 respectively. These standard devi-

ations can be translated into a standard deviation on the gap between
the two curves using the rough slope of the mortality curves at the me-
dian, which is about 0.11/year; whatever the true gap is between the true
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Figure 2: The curved lines show a simple theoretical model of dog mortal-
ity with parameters g = 1/10.0 and A = 0.003125/Sv/kg [computed using
N = 1000 compartments]; the data points have been transcribed roughly
from the original data shown in Figure 1. (Best viewed in colour.)



population medians, an experiment using cohorts of sizes 57 and 92 will
give an empirical gap whose standard deviation around the true value is
roughly 1/0.0522 + 0.0662/(0.11/year) ~ 0.76 years (or 277 days). The ob-
served gap between the two cohorts” medians is about 240-300 days (based
on eyeballing figure 1). (I will get the original data in due course.) So the
observed gap is similar in size to the standard deviation.

In conclusion, the weight of evidence for LNT provided by the ob-
served gap between the two medians (for 3mSv/day and 0 mSv/day) is
weak, not strong.

However, the full data-set includes much more information than the
medians, and it is possible that a full statistical model, modelling the
known cause of death of every animal, might give weightier results.

What about 7.5 mSv/day?

Applying the same analysis to the comparison of medians of the control
group and the 7.5mSv-day group (of size K = 46), the standard deviation
of the gap about its true value is roughly 1/0.0742 + 0.0662/(0.11/year)
~ 0.9years (or 326 days), and the observed gap is about 940 days. This
observed gap between the 7.5mSv/day group and the control group thus
seems highly significant.
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Figure 3: (Replotted using analytic solution.) The curved lines show a
simple theoretical model of dog mortality with parameters g = 1/10.0 and
A = 0.003125/Sv /kg; the data points have been transcribed roughly from
the original data shown in Figure 1. (Best viewed in colour.) (Whereas
Figure 2 showed results computed for N = 1000 compartments, these
curves use the analytic solution for N — oo (equation 9).



