Likelihood—based Boosting

Radford M. Neal
Depts. of Statistics and Computer Science, Univ. of Toronto,
M5S 1A4, Canada. radford@stat.toronto.edu

David J.C. MacKay
Cavendish Laboratory, Cambridge, CB3 OHE,
United Kindom. mackay@mrao.cam.ac.uk

November 23, 1998

Abstract
We present a probabilistic interpretation of ‘boosting’ in terms of a mixture of experts
model, and give a boosting algorithm that is a crippled maximum likelihood algorithm.

Boosting is a method for training multiple classifiers on a dataset and combining their outputs
to make predictions for new cases (Schapire, 1990; Freund and Schapire, 1995; Freund and Schapire,
1996; Freund and Schapire, 1997; Schapire and Singer, 1998). In this paper we present a probabilistic
interpretation of ‘boosting’ in terms of a simple mixture of experts model, and show that this model
has a likelihood—increasing algorithm which looks a lot like ‘adaboost’.

1 The likelihood boosting algorithm

It is assumed that we have a probabilistic model whose prediction for a categorical variable ¢ given
an input x and given the parameters 6 = (7, {w}) is:

P(tlx,m,{w}) = Zﬂ'c t|xw ) (1)

where each of the component models has a probability distribution P(¢|x, w(¢)) which is simple to
learn given a bunch of labelled data {x™,¢™}. We assume access to a learning algorithm which
returns the maximum likelihood parameters w in response to a weighted data set with weights (™).
This model is known as a mixture of experts model, with fixed mixing coefficients {7.}. In a general
hierarchical mixture of experts, the mixing coefficients would be parametric functions of the input
X.

An example of a component model is:
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which could be called a noisy threshold function. Another example is the standard logistic classifier:
1
tx, w) : 3
P(tx, w') = 1+ exp (—w(© - x) (3)



1.1 What this model is not

This mixture of experts model combines together C' sigmoid functions, but it is not the same as the
neural network model studied by Friedman et al. (1998). Contrast the model we are studying,

P(t‘x’ T, {W}) = Zlﬂ—cf(w(c) : X)a (4)

where f(a) =1/(1+ e~®), with their
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or equivalently,
P(tx,m, {w}) = f (z fc(X)> | ©)

where f. is a nonlinear function computed by component c.
We believe that the first of these two models has more in common with boosting than the second,
as illustrated by the learning algorithm that follows.

1.2 Initialization

We initialize m = (1, €, ¢€...€), where € is a tiny number, and all classifiers’ parameters to w = 0 (or
whatever value of w corresponds to a classifier that is insensitive to the value of x).
We denote all the parameters {7, w} by 6.

1.3 E-step

We compute the responsibilities r., of each expert ¢ for each data point n.
o = P(c[x™ ™ g) = : -
ren = Pl 1,0) = e (7)

At the first iteration, we have initialized 7 such that only the first expert is responsible. We have
r1n, = 1 for all n, and r., o € for all ¢ not equal to 1.

1.4 Partial M—step

We update the parameters w!) of expert 1 only. We do this using the optimization algorithm for
w, which is fed with the entire data set {t™ x(™}, weighted by the responsibilities {r.,} for ¢ = 1,
which at this stage are all equal. The optimizer returns optimized parameters w* that might satisfy,
for example,
w* = argmax Y e, log P(t™[x™, w(). (8)
n

1.5 E-step

We now reevaluate the responsibilities r.,. Expert 1 still has overwhelming responsibilities for all
points still, but that does not matter. The reponsiblities of all the other experts for the nth data
point will be equal, but those responsibilities r., will vary from data point to data point. A data
point (™, x(™) that was well modelled by the optimized expert number 1 will have a smaller 74,
than a point that was poorly modelled by expert number 1.
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1.6 Partial M—steps

We now adjust the parameters of expert 2 only, using the responsibilities {ry,} as weights for the
optimizer.

(All this seems very similar to the reweighting of data made by boosting algorithms.)

We also update the prior probabilities of the two experts m; and 7. We constrain the proba-
bilities 73 ... to still equal €. The details of this 7 update are flexible. It would probably be best
to perform a sequence of E and M steps in which 7 is updated until it converges. (Otherwise the
prior probability of expert 2 would remain of order €.) The cost of this 7 optimization would be
small because, as long as the parameters w are unchanged, few computations would be required to
update the responsibilities.

1.7 And so forth

Having refreshed the responsibilities, we can wake up another expert. In order to make this algo-
rithm most similar to boosting, we would only allow the new expert’s parameters w and the weights
7 to be adjusted.

1.8 Properties

This algorithm is a crippled maximum likelihood algorithm. The likelihood increases with every
step, but we don’t expect to reach the optimum setting of the parameters unless we can tweak all
the parameter vectors w.

The model itself is not capable of overfitting in a likelihood sense, at least for the mixture of
experts models given earlier. What we mean by this is that given a generic data set, it is not
possible, given a huge number of experts C, to fit that data arbitrarily closely, with the likelihood
P({t}|f) going arbitrarily close to 1. While it is possible to make a very complicated decision
boundary (the surface in x space on which P(t|x,6) is 0.5), such a predictive function could only be
made by mixing together the predictions of many mutually contradictory experts, so the predictive
distribution would become closer to 0.5 in most places, the more wiggly the decision boundary
becomes.

2 Discussion

Any model that is implemented with a boosting algorithm could also be implemented as a mixture
of experts optimized with maximum likelihood.

Several questions can be raised: Does normal boosting offer any advantages over this crippled
maximum likelihood method? If not, then does the crippled maximum likelihood (and boosting)
offer any advantages over real maximum likelihood? If yes, (for example, if the crippled ML method
avoids overfitting) is the avoidance of overfitting obtained by crippling maximum likelihood in this
way a better approach than limiting model complexity or adding penalty terms? In particular,
does boosting or crippling maximum likelihood really avoid the need to set some fudge parameter
such as the magnitude of the penalty by hand? If so, is its solution better than other automatic
methods, such as setting the magnitude of the penalty by cross-validation?
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