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Figure 1: Toy data from two populations differing by an offset dy

1 Inferring the distance to the Virgo cluster

Introduction

The most accurate means of measuring the distances to galaxies involves the
measurement of the period and luminosity of a class of supergiant variable
stars known as Cepheids. Empirically, the luminosity and log period of nearby
Cepheids show a linear relationship (with a small amount of scatter), so the
measurement of the magnitude and period of a number of Cepheids in a distant
galaxy give direct distance information, in the form of a constant offset be-
tween their magnitude—period line and the magnitude—period line of the nearby
Cepheids.

In Nature vol 371 p.757-762, Freedman et. al. report such a measurement of
the distance to the Virgo cluster galaxy M100, and a deduction of the value of
the Hubble constant. The details of their data analysis are not given there, but
it is presumed that a least-squares fit of a straight line model is used. This data
fitting procedure corresponds to a model that assumes uniform Gaussian scatter
from an exact straight line relationship. However, one might argue that these
assumptions are inappropriately strong. It is not known that an exact straight
line relationship holds, and nor do we know that the scatter is Gaussian and
uniform. A model that made less strong assumptions might yield different error
bars on the inferred offset. Larger error bars might help reduce the controversy
over the value of the Hubble constant.

We have not yet received the original data from Freedman et. al., so here we
use toy data (figure 1) to compare the inferred offset between two scatterplots
when (a) a straight line assumption is replaced by a polynomial of degree K;
(b) a uniform Gaussian noise level is replaced by a noise level that varies as a
function of z.



Method

Data in the form of (z,t¢) pairs are assumed to be obtained from two popu-
lations. The underlying relationship is described by y, z pairs, where y(z) =
>on th:V‘i én(z), and the basis functions ¢ are Legendre polynomials. Similarly,

the varying noise level is written as 7(z) = exp (Effl by, th(r)) The parame-

ters of the model are thus {wp,}°% and {b,}<#. Gaussian priors on these pa-
rameters are specified with single hyperparameters «a,, and «a; that have broad
gamma priors. For convenience I introduce K = max(Kw, Kp) and if Kp < K
I introduce extra parameters {bh}gB_H that are set to zero (this allows the use
of a single matrix ¢p(z,)). The data from the two populations are stored in
vectors x and t such that population ‘a’ gave rise to {(z, tn)}nNgl, and popula-
tion ‘b’ gave rise to {("Emtn)}nN:NaH' The offset between the two populations,
the quantity of interest, is termed dy.

We obtain the special case of uniform noise by setting Kp = 1 and the spe-
cial case of a straight line relationship by setting Ky = 2.

Here is the file astro10.bug:

model astrol0;

const
N=100, # Number of data
Na=50, # Number of data in first population
Kw=10, # Number of basis functions for y(x) [alternative: 2]
KB=10, # Number of basis functions for tau(x) [alternative: 1]
K=10, # Please ensure K=MAX(KW,KB)

x0=0.0,dx=1.0;

var
x[N], day , yIN], t[N], w[KI, b[K],
phi[K,N],
alphab, alphaw, tau[N],sigmalN];

data in "astro2.dat" ;
inits in "astrol.in" ;

dy ~ dnorm( 0.0, 0.0001 ) ; # offset between two populations

for (m in 1:N) { # recurrence relation to define Legendre polynomials

phil1i,m] <- 1.0 ;
phil2,m] <- (x[m]-x0)/dx ;



}

for

for

for

for

for

for

for

}

for (h in 3:K) {
philh,m] <- ( ( 2 * h - 3 ) * (x[m]-x0)/dx * philh-1,m]
- (h-2) *philh-2,m] ) / (h - 1) ;
¥

(h in 1:KW) {
wlh] ~ dnorm( 0.0 , alphaw ) ;

(h in 1:KB) {
b[h] ~ dnorm( 0.0 , alphab ) ;

(h in KW+1:K) {
wlh] <- 0.0 ;

(h in KB+1:K) {

b[h] <- 0.0 ;
(m in 1:N) {
t [m] “ dnorm( y[m] , taulm] ) ;

tau[m] <- exp( inprod( b[] , phil,m] ) ) ;
sigmalm] <- 1.0 / sqrt( taulm] ) ;

(m in 1:Na) {
y [m] <- inprod( w[] , phil[,m] ) ;

(m in Na+1:N) {
y [m] <= dy + inprod( w[l , phil,m] ) ;

alphab ~ dgamma( 1.0E-3 , 1.0E-3 ) ;
alphaw ~ dgamma( 1.0E-3 , 1.0E-3 ) ;

And here is the file astrol.in:

list ( alphab=1.0 , alphaw=1.0 , dy=0 )

Results

The toy data was generated using true values Kp = Kw = 3 and dy = 3.0.
A burn-in period of 500 iterations was followed by 1000 iterations with
statistics on dy being recorded.



dy | Kg 1 10

Kw mean sd 2.5%:97.5% | mean sd 2.5%:97.5%
2 2.442 0.3005 1.857:3.020 | 2.761 0.2603 2.250:3.240
10 2.542 0.3074 1.983:3.156 | 2.714 0.2710 2.180:3.231

The over—simple model Kg = 1, Ky = 2 gives a 95% confidence interval for dy
that only just includes the true value. Changing from the over—simple model to
the model with more parameters in the interpolant (moving down from the top
left corner) produces a slight increase in the uncertainty of dy. The increase is
only slight because there are two opposing effects: first, for any particular value
of noise level 1/7, the more flexible interpolant is less well determined and the
uncertainty in dy increases; but second, the greater flexibility of the interpolant
allows it to fit the curving shape of the data and makes smaller noise levels
1/7 probable. Small noise levels give more accurate inferences. A similar effect
occurs as we increase the number of terms in the representation of 7(z) (going
from left to right). The estimation of dy can become more precise, in intuitive
terms, because the model is able to discover that some values of z give more
reliable measurements than others, so that the inference of dy can be based on
them, ignoring the more noisy measurements. The net effect is that when we
change from the over—-simple model to the most flexible model (bottom right),
the confidence interval becomes smaller and more accurate. Whether this will
happen for the real Cepheid data remains to be seen.
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