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Abstract

We use Cayley graphs to construct several dual-containing codes, all of which have

sparse graphs. These codes’ properties are promising compared to other quantum

error-correcting codes.

This paper builds on the ideas of the earlier paper Sparse-Graph Codes for Quantum Error-

Correction (quant-ph/0304161), which the reader is encouraged to refer to.

To recap: Our aim is to make classical error-correcting codes with practical potential for

quantum error-correction. The rules of the game for classical binary codes are: (1) each code

must be defined by a sparse graph (so that the circuit for computing the syndrome is simple,

and so that we have the chance of getting good decoding with a low-complexity decoder);

(2) the classical code must contain its own dual; equivalently, every row of the parity check

matrix must be a codeword; equivalently, any two rows of the parity check matrix must have

even overlap. (3) the code must have rate greater than 1/2.

While struggling to make codes satisfying these constraints, we formulated two mutually-

exclusive conjectures
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Conjecture G: Any dual-containing code defined by an M×N parity check matrix H with

M < N/2, all of whose rows have weight ≤ k, has codewords of weight ≤ k that are not in

the dual.

Conjecture D: There exist dual-containing codes with sparse parity-check matrix and good

distance. To be precise, such codes would have a parity-check matrix with maximum row

weight k, and for increasing blocklength N the minimum distance d of codewords not in the

dual would satisfy d ∝ N .

In this paper we present some more algebraic constructions of binary codes that contain

their duals. These codes have the nice property that their sparse parity check matrices have

many redundant rows. (These redundant rows allow enhanced decoding performance.) We

have found codes that are counterexamples to Conjecture G.

1 Cayley-graph construction of a parity-check matrix

Given a set of k generators of a group of size N , we can make a bipartite graph with N

vertices on each side and degree k by putting an edge from each group element (vertex on

the left) to each group element (vertex on the right) that can be reached by applying one of

the generators. If the inverses of the generators are in the set of generators, if the group is

abelian, and if k is even, then the graph will be symmetric and will define a square parity-

check matrix with the property that the overlap between any two rows is even. This will

thus define a code that is dual-containing.

An example. Throughout this paper, N will be a power of 2 (N = 2n), and the group

elements are the set {0, 1}n. Our method is easiest to describe if we number our vertices

from 0 to N − 1. A vertex (described by an integer in (0,N − 1)) should be thought of as

defining a binary string of length n.

Input: A set of k integers g_1 ... g_k (the generators)

1. Create an N x N matrix consisting of zeros.

2. for n = 0 ... N-1 do

for g in {g_1 .. g_k} do

set entry [n, n^g] to 1 (where ^ denotes exclusive or)

2 Detailed Example

Some generators. d∗ denotes lowest weight of word not in dual.
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Code name Generators k N Mtrue K R d∗

PARITY128.8 1, 2, 4, 8, 16, 32, 64,

127

8 128 56 72 0.5625 8

PARITY512.10 1, 2, 4, 8, 16, 32, 64,

128, 256, 511

10 512 240 272 ' 0.53 16

PARITY2048.12 1, 2, 4, 8, 16, 32, 64,

128, 256, 512, 1024,

2047

12 2048 992 1056 ' 0.516 32??

QR1.512.18 1, 2, 4, 9, 19, 39, 78,

156, 313, 114, 228,

456, 400, 288, 64,

128, 256, 511

18 512 240 272 ' 0.53 32??

GOLAY4096.24 1, 3, 6, 12, 24, 49, 99,

199, 398, 797, 1594,

3189, 2282, 468, 936,

1872, 3744, 3392,

2688, 1280, 2560,

1024, 2048, 4095

24 4096 1472 2624 ' 0.64 ??

# weight enumerator of the (128, 16) subcode whose nonzero words are not in the dual

# w A(w) Cumulative value (sum A(w))

0 1 1

8 54 55

12 108 163

14 216 379

16 837 1216

18 24 1240

20 2916 4156

22 5832 9988

24 5832 15820

26 12312 28132

28 17496 45628

30 12960 58588

32 5508 64096

34 1296 65392

36 144 65536

3 Performance

The Golay-derived code seems the most interesting. Its rate is biggest. At a flip probability

of 0.025, the block error probability is 5 × 10−5.
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Figure 1. Performance of the dual-containing ‘GOLAY.4096’ code, on the binary symmetric channel,

as a function of the flip probability fm. The vertical axis shows the block error probability.

This is superior to all codes in figure 17 of our paper.

More graphs of performance results to come soon.

4 Amin’s conjectures

Here is a conjecture on the dimensions of the parity-Cayley codes:

size = 22m+1. degree = 2m + 2. dimension of the rank = a
m

, where a1 = 2 and a
m+1 =

4a
m

+ 2m. dimension of the kernel = 22m+1 − a
m

= b
m

and b
m+1 = 4b

m
− 2m.

The two first assertions are of course only notation, and the last follows from the third (and

vice versa). I agree with you that these graphs are probably good candidates to settle the

conjecture you mention.

5 Alternative decoder

Might add a section here on an improved decoding algorithm (work with Oliver Stegle).
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6 Discussion

6.1 Weaknesses

This approach only creates codes with blocklength a power of 2; and only creates codes with

particular rates.

6.2 Strengths

These algebraic constructions lead to codes having many redundant low-weight checks. These

redundant checks help message-passing decoders work better.
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