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Abstract

When recording intracellularly, the resistance across the cell membrane must be
monitored. However the resistance seen by the recording amplifier consists of the ac-
cess resistance (between the electrode and the cell) in series with the cell resistance.
When the stray capacitance is low, the time constant of the cell and that associated
with the recording setup are different and the two resistance values can be easily
determined visually. We describe a model-fitting method which can automatically
infer the electrode and cell capacitances and resistances in more difficult cases.
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Fig. 1. Assumed circuit
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Fig. 2. Example data V(1).
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1 The Problem

In current clamp (or Bridge) mode of intracellular or patch clamp recording,
the electrode ruptures a neuron’s cell membrane with the goal of recording
the potential across this membrane. This is measured with electronic circuitry
connected between the contents of the electrode and the extracellular bath
(2; 1). A simplified version of the circuit is shown in Figure 1 where R,,
and (), are the resistance and capacitance of the cell membrane, R, is the
resistance at the electrode-cell interface, C; is the capacitance at the amplifier
input and is due to the capacitance between the electrode and ground as well
as the capacitance to ground at the input of the amplifier circuit. F is the
membrane potential of the cell.

In order to correctly interpret total resistance drifts and to compensate ap-
propriately for any injected current, it is crucial to distinguish the resistance
of the cell from that of the electrode. The user usually determines the elec-
trode resistance by injecting a current step of height ¢ into the electrode and
observing the resulting voltage V' (t) (see Figure 2 for an example). If we as-
sume that the unknowns R,,, C,,, R., C; and E are constant during this step
then the resulting voltage V(¢) is a sum of a step response and two decaying
exponentials. The height of the voltage step is

AV = i(Rm + R.).

For configurations that afford low stray capacitance, C;, and access resistance
Re, the time constants of the two exponential decays are vastly different (the
slower time constant can be associated with the voltage drop across the cell
and the faster one with the drop across the electrode) allowing for clear deter-
mination of the electrode resistance (obtained by dialing the “Bridge Balance”
knob until the steep part of the curve just disappears). With the “visualized
patch” technique, shallower electrode entry angles are required which greatly



increases the capacitance across the electrode. Also more myelinated tissue can
partially clog electrode tips resulting in higher access resistances. Together,
these effects can lead to curves where the separation between voltage drop
across the electrode and that across the cell are not so obvious.

2 The Method

We describe a procedure to automatically determine the values of the resis-
tances and capacitances with error estimates assuming that the system fits
the model shown in Figure 1. The fit can be visually assessed as a measure of
confidence in the model.

Advantages of this approach include:

1) It removes the qualitative nature of bridge balancing allowing more accurate
determination of R, in difficult cases.

2) It uses all the data from the curve not just points near the “knee”, al-
lowing determination of the parameters under higher noise conditions (with
correspondingly larger error estimates).

3) It does not require capacitance compensation (which may cause instability
if conditions drift).

4) Tt gives the values of C; and C,, as well as the resistances

A physical model corresponding to the circuit in Figure 1 is fitted by maximum
likelihood (3) to the entire voltage trace V (¢). The equation for the voltage is:

V(t) = i[ae~M (1) 4 pemr2(t=t) 4 o] 4 V(t,)

where
(CiRe + CiRy, + CrRy)
— 2
H 9C,R.C,. R, + s/
_ (CiRe+ CiRpy + CrRyy)
Hz = 9C;RoCo R 5/2

\JC?R2 + 202 R Ry, — 2C;R.Cpn Ry + C2RZ, + 2C;R2,Cyo + O, R2,
5= C:R.C. R,

a = (puec—1.0/C;)/s
b= (—pic+1.0/C;)/s
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INFERRED PARAMETERS

R,= 106.9£0.5 MQ2
R.,= 128.240.5 MQ
Ci= 7.84£0.1 pF
Cn= 163%2 pF
to =—0.030+£0.008 msec
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Fig. 3. Example fit. Current pulse size was —0.05nA. The two dotted curves show
the two exponential decays.

c=R.+ R,

Note that when R,, >> R, and C,, >> C; the time constants tend towards
1/(R.C;) and 1/(R,,Cy,), but in general both time constants involve all terms.

The inputs to the model-fitting method are the initial voltage V (to), the size
of the current step i, and the trace V(¢) for ¢t > ty. The software infers the
values of R,,, R, C; and C,, along with value of the step onset time ¢y3. These
five variables are reported with error bars. More information about the code
can be found in Appendix A.

If some parts of the voltage trace V(t) are missing or corrupted, the fitting
method can be applied to whatever data is available and will still give reliable
results, but with appropriately larger error bars on the inferred parameters.

Figure 3 shows the fit found for the dataset of Figure 2. Also shown are the
two exponential decays.

3 Current Limitations

The model currently assumes that the data is corrupted by additive Gaussian
independent noise. This assumption is clearly not true (since correlations in the
noise are visible to the eye) and leads to smaller error bars than appropriate.
This problem can be addressed with more accurate noise models (perhaps
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INFERRED PARAMETERS

R, = 49.671+0.04 MQ
R.= 49.58+0.04 MO
C;= 3.01£0.03 pF
Cn= 459+1 pF
to =0.08344-0.0009 msec

Fig. 4. Example fit 2. Current pulse size was —1 nA. This trace was obtained from
a model cell with specified parameters R,,,=50M(2, R.=50MS2, and C,,,= 470 pF.

specifically including a 60Hz component).

Figure 4 shows the results when the method is applied to data from an artificial
cell with known parameters. The inferred parameters are close to the true
values but, as anticipated, the error bars are overly confident because the

noise is correlated.
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4 APPENDIX

Software and further information can be obtained from
http://www.keck.ucsf.edu/ desa/RCfit.html

doit.p is a perl program that invokes gnuplot’s gnufit utility. It requires GNU-
PLOT 3.5 or better and has been tested with

GNUPLOT
Unix version 3.5 (pre 3.6)
patchlevel beta 340
last modified Tue Nov 25 22:57:44 GMT 1997

and

GNUPLOT
unix version 3.5
patchlevel 3.50.1.17, 27 Aug 93
last modified Fri Aug 27 05:21:33 GMT 1993

report.p is called by doit.p to present the results.



