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Abstract

Is the distribution of cones in the fovea random? We can never prove that this is so;
we can only assess how probable this theory is relative to explicit alternative models,
given the data. That paper does so for one simple alternative model of correlation.

Readers of Mollon and Bowmaker’s letter in Nature may have felt sceptical about their
assertion that the distribution of long and middle wave cones ‘is random’ given their data.
Their χ2 test only used about a third of the information in the data about neighbouring
cones. It would seem desirable to make full use of the data. Furthermore it might be
argued that it is never possible to show that a phenomenon is random — only that the
alternative models that have been studied for the phenomenon are less probable than the
random model. In a Bayesian approach, explicit alternative models are constructed, and
their relative probabilities can be evaluated in the light of the data. The Bayesian approach
makes full use of all the relevant information in the data, and can be applied to any data set,
no matter how quirky. The method of inference is mechanical once the alternative models
have been defined. Bayesian inference automatically penalises excess parameters, so there
is no need to fear being ‘duped’ into accepting over-complex models.

Three models are studied to account for the data in [1]. All three models ignore ‘short’
(blue) cones, treating them as vacancies in a lattice of ‘long’ and ‘medium’ cones (hence-
forward referred to colloquially as red and green cones).

H1: random

The null hypothesis H1 is that the red and green cones occur independently with fixed
probability. Thus the probability of a particular arrangement of cells, x, is:

P (x|θ,H1) =
∏

i

eθxi

eθ + e−θ
(1)

where xi =1 when cone i is red, and xi =−1 when it is green. The parameter θ measures the
bias in favour of red cones; for this model, the probability that one cell is red is pR = eθ

eθ+e−θ .
In principle, we could infer θ given the data, but clearly the data are compatible with the
assertion that θ = 0. The attention here is focussed on the question of whether there are
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spatial correlations in the lattice of cones, so in the following the parameter θ will be set to
zero (but the analysis could easily be repeated with non–zero θ). When the identity xO of
N cones is observed, the likelihood of model H1 is therefore

P (xO|H1) =
1

2N
. (2)

That is, under H1, all data sets are equally probable.

H2: constant spatial correlations

The second hypothesis asserts that there are spatial correlations or anticorrelations among
the cones, described by an additional parameter, w. The probability that a lattice of cells
takes on an arrangement x is

P (x|θ,w,H2) =
e

θ
∑

i

xi +
w

2

∑

i∼j

xixj

Z(θ,w)
(3)

The notation “i ∼ j” indicates that the sum is over cones i and j that are adjacent. This
model will be referred to as the Ising model, since formally it is identical to the statistical
model of a lattice of magnetic spins with a constant coupling between neighbours.

What predictions does this model make for the small fragments of retina in the data
set? Well, if we neglect the effect of the surrounding ‘sea’ of cells on the fragment, an
approximation for the probability over possible arrangements xO of the observed cells is:

P (xO|θ,w,H2, isolated) =
e

θ
∑

i∈O

xi +
w

2

∑

i∼j∈O

xixj

ZO(θ,w)
, (4)

where

ZO(θ,w) =
∑

xO

e

θ
∑

i∈O

xi +
w

2

∑

i∼j∈O

xixj

. (5)

However, strictly, the surrounding sea of cells will influence the observed cells (if w 6=0), so
the true predictive distribution is written in terms of a sum over states xS of the surrounding
sea:

P (xO|θ,w,H2, immersed) =
∑

xS

P (xO,xS |θ,w,H2, in sea)

=
ZS|xO

(θ,w)

ZS,O(θ,w)

where the total partition function ZS,O and the conditional partition function ZS|xO
are:

ZS,O(θ,w) =
∑

xS ,xO

e

θ
∑

i

xi +
w

2

∑

i∼j

xixj

(6)

ZS|xO
(θ,w) =

∑

xS

e

θ
∑

i∈S

xi +
w

2

∑

i∼j∈S

xixj

(7)
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The ‘isolated’ likelihood function (11) is relatively easy to evaluate, and it may be a good
approximation to the ‘immersed’ likelihood (13). In this study I have evaluated the isolated
likelihood function, and also the immersed likelihood function with the sea approximated
by a narrow ‘moat’ surrounding the fragment.
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2 Second draft

Is the distribution of cones in the fovea random? We can never prove that
this is so; we can only assess how probable this theory is relative to explicit
alternative models, given the data. This paper does so for one simple alternative
model of correlation.

In their letter in Nature [1], Mollon and Bowmaker describe the results of experiments
measuring the spatial distribution of the different types of cone photoreceptor (‘long’,
‘medium’ and ‘short’) in the retina. They asserted on the basis of their data that the
distribution of long and middle wave cones ‘is random’. However, it might be argued that it
is never possible to show that a phenomenon is random — only that the alternative models
that have been studied for the phenomenon are less probable than the random model. In
fact Mollon and Bowmaker’s χ2 test only used about a third of the information in the data
about neighbouring cones, and implicitly made a comparison with an alternative model
incorporating correlations in one direction only. Their test was not applicable to data frag-
ments with lots of gaps. It would seem desirable to make full use of the data, and consider
an alternative model allowing correlations in all directions. In a Bayesian approach, explicit
alternative models are constructed, and their relative probabilities are evaluated in the light
of the data. The Bayesian approach makes full use of all the relevant information in the
data, and can be applied to any data set, no matter how quirky. The method of inference
is mechanical once the alternative models have been defined.

In this chapter, three models are studied to account for the data in [1]. All three models
ignore ‘short’ (blue) cones, treating them as vacancies in a lattice of ‘long’ and ‘medium’
cones (henceforward referred to colloquially as red and green cones). The final conclusion
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turns out to be the same as that of Mollon and Bowmaker’s paper: no model more probable
than randomness has been found. But this problem provides an interesting case study of
Bayesian methods.

H1: random

The null hypothesis H1 is that the red and green cones occur independently with fixed
probability. Thus the probability of a particular arrangement of cells, x, is:

P (x|θ,H1) =
∏

i

eθxi

eθ + e−θ
(8)

where xi =1 when cone i is red, and xi =−1 when it is green. The parameter θ measures the
bias in favour of red cones; for this model, the probability that one cell is red is pR = eθ

eθ+e−θ .
In principle, we could infer θ given the data, but clearly the data are compatible with the
assertion that θ = 0. The attention here is focussed on the question of whether there are
spatial correlations in the lattice of cones, so in the following the parameter θ will be set to
zero (but the analysis could easily be repeated with non–zero θ). When the identity xO of
N cones is observed, the likelihood of model H1 is therefore

P (xO|H1) =
1

2N
. (9)

That is, under H1, all data sets are equally probable.

H2: constant spatial correlations

The second hypothesis asserts that there are spatial correlations or anticorrelations among
the cones, described by an additional parameter, w. The probability that a lattice of cells
takes on an arrangement x is

P (x|θ,w,H2) =
e

θ
∑

i

xi +
w

2

∑

i∼j

xixj

Z(θ,w)
(10)

The notation “i ∼ j” indicates that the sum is over cones i and j that are adjacent. This
model will be referred to as the Ising model, since formally it is identical to the statistical
model of a lattice of magnetic spins with a constant coupling between neighbours.

What predictions does this model make for the small fragments of retina in the data
set? Well, if we neglect the effect of the surrounding ‘sea’ of cells on the fragment, an
approximation for the probability over possible arrangements xO of the observed cells is:

P (xO|θ,w,H2, isolated) =
e

θ
∑

i∈O

xi +
w

2

∑

i∼j∈O

xixj

ZO(θ,w)
, (11)

where

ZO(θ,w) =
∑

xO

e

θ
∑

i∈O

xi +
w

2

∑

i∼j∈O

xixj

. (12)
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Figure 1: Mollon and Bowmaker’s data: p24, p29, p33, p44, p47
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However, strictly, the surrounding sea of cells will influence the observed cells (if w 6=0), so
the true predictive distribution is written in terms of a sum over states xS of the surrounding
sea:

P (xO|θ,w,H2, immersed) =
∑

xS

P (xO,xS |θ,w,H2, in sea)

=
ZS|xO

(θ,w)

ZS,O(θ,w)

where the total partition function ZS,O and the conditional partition function ZS|xO
are:

ZS,O(θ,w) =
∑

xS ,xO

e

θ
∑

i

xi +
w

2

∑

i∼j

xixj

(13)

ZS|xO
(θ,w) =

∑

xS

e

θ
∑

i∈S

xi +
w

2

∑

i∼j∈S

xixj

(14)

The ‘isolated’ likelihood function (11) is relatively easy to evaluate, and it may be a good
approximation to the ‘immersed’ likelihood (13). In this study I have evaluated the isolated
likelihood function, and also the immersed likelihood function with the sea approximated
by a narrow ‘moat’ surrounding the fragment.
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