
Efficient communication with one or two buttons

David J.C. MacKay∗, Chris J. Ball∗ and Mick Donegan†

∗Cavendish Laboratory, Cambridge, CB3 0HE, United Kingdom
†ACE Centre, 92 Windmill Road, Oxford OX3 7DR, United Kingdom

Abstract. We discuss how the arithmetic-coding-based communication system, Dasher, could be
driven by discrete button presses. We describe several prototypes and predict their information rates.

Dasher is a communication system based on a beautiful idea from information theory,
called arithmetic coding (Witten et al., 1987; MacKay, 2003, Chapter 6). Arithmetic
coding is an optimal method for text-compression using a language model. By turning
arithmetic coding on its head, we obtain an optimal method for text-generation.

We view a person’s gestures as a source of information, and the sentences they wish to
communicate as the sink of information. Good interface design maximizes the number
of bits per second that are conveyed from the user into text. Poor interfaces waste the
user’s time either by failing to extract all the bits that the user could easily generate, or
by diverting the user’s bits into redundant activity.

The Dasher approach to interface design decouples the issues of efficient bit-
generation and efficient language-generation. Unlike in most interfaces, a Dasher-user’s
gestures have no relationship to particular symbols in the language. Instead, they
control navigation in a continuous space whose contents are laid out using a language
model. For demonstrations, or to try Dasher for yourself – it’s free – please visit
www.inference.phy.cam.ac.uk/dasher/.

HOW DASHER WORKS

Imagine writing a piece of text by going into the library that contains all possible books,
and finding the book that contains exactly that text. In this way, writing can be turned into
a navigational task. What is written is determined by where the user goes. In Dasher’s
idealized library, the ‘books’ are arranged alphabetically on one enormous shelf. When
the user points at a part of the shelf, the view zooms in continuously on that part of the
shelf. To write a message that begins ‘hello’, one first steers towards the section of the
shelf marked h, where all the books beginning with h are found. Within this section are
sections for books beginning ha, hb, hc, etc.; one enters the he section, then the hel
section within it, and so forth.

To make the writing process efficient we use a language model, which predicts the
probability of each letter in a given context, to allocate the shelf-space for each letter of
the alphabet, as illustrated in figure 1. The shelf is recursively chopped up in such a way
that the amount of shelf-space devoted to a string is proportional to its probability. The
user’s gestures are turned into steering commands, controlling the portion of the display

i

h

g

o

a

n

o

i

e

r

f_

u

y

m

m

s

d

p

a

w

e

e

d

v

_

e

g

_

a

s

h

_

a
il
_

a

o
d

p
t

a

nd

d

t_

o

s

el

r

n

l

v

wu

_

d

o

t

p

t

a
f

t

FIGURE 1. A Screenshot of Dasher when the user starts writing hello. The shelf of the alphabetical
‘library’ is displayed vertically. The space character, ‘−’, is included in the alphabet after z. Here, the
user has zoomed in on the portion of the shelf containing messages beginning with g, h, and i. Following
the letter h, the language model makes the letters a, e, i, o, u, and y easier to write by giving them more
space. Common words such as had and have are visible. The pointer’s vertical coordinate controls the
point that is zoomed in on, and its horizontal coordinate controls the rate of zooming; pointing to the left
makes the view zoom out, allowing the correction of recent errors.

zoomed into. If the user can generate information at a rate of, say, 5 bits per second,
then our aim is to feed these bits to Dasher in such a way that, each second, the display
zooms in by a factor of 25 = 32 on the region containing the text required by the user.
When the language model’s predictions are accurate, many successive characters can be
selected by a single gesture. The language model we use, PPMD5 (Cleary and Witten,
1984; Teahan, 1995), generates text at an exchange rate of about two bits per character.
Thus the user will be able to write at 5/2 characters per second, or 30 words per minute.
We could only beat this writing speed by enhancing the rate at which the user generates
bits, or improving the predictions of the language model.

Dasher was first developed to be driven by continuous two-dimensional gestures,
delivered, for example, via a mouse, touch screen, or gazetracker. Our experiments
showed that, with Dasher, it is easy to spell correctly and hard to make spelling mistakes.
Using an ordinary mouse, typical novice users reach a writing speed of 25 words per
minute after 60 minutes of practice, and expert users can write at 35 words per minute
(Ward et al, 2002). Results using Dasher with an gazetracker were record-breaking:
after 60 minutes’ practice, novice users can drive Dasher using an eyetracker at a speed
of about 15 words per minute; expert users can write at 25 words per minute, and make
almost no spelling mistakes (Ward and MacKay, 2002).

In this paper, we discuss how Dasher could instead be used with button-pushes.

BUTTONS

We are concerned with several categories of users, whom we model as follows.
Two or three buttons, no timing, no noise. We do not want to give these users time-

critical tasks. Conveying information through the precise timing of a button-push is not
an option. These users can select among two or three buttons. We assume that their
selections are reliable. An example user who might match this category is someone with
cerebral palsy.

If we assume that the typical time between button presses is t, the capacity of the
communication channel is (log2 K)/t, where K is the number of buttons they can choose
among. A more sophisticated model might discriminate between the time between two
presses of the same button, and the time taken to switch buttons.

Two or three buttons, no timing, noisy. If we assume the user does not always
press the correct button, then the capacity of the communication channel is significantly
reduced. For example, if a user has two buttons and presses the wrong one a fraction
f = 1/10 of the time, then the capacity is reduced by nearly a factor of two. The capacity
is

C =
log2 K

t
(1−H2(f)), (1)

where H2 is the binary entropy function.
A user who might match this category is someone communicating via a brain-

computer interface. Some researchers attempt to reduce the noise level f of their brain-
computer interfaces by increasing the time T between decisions. But increasing T may
not be optimal in terms of capacity. Perhaps we can design a more efficient interface that
does not require reliable decisions.

One button. A user who presses only one button can convey information by the
timing of those events.

One button, short and long presses. Some users can control how long they hold a
button down. One possible model, analogous to that used in Morse code, allows the user
to distinguish between short and long presses.

TWO-BUTTON DASHER

We can imagine two ways in which two-button Dasher could work: ‘direct’ and ‘menu’
two-button Dasher. Both approaches rely on the assumption that the language model
is doing its job, so that the user’s destination is equally likely to be any point on the
right-hand side of the display.

In direct two-button Dasher (figure 2a), each button is associated with an immediate
zooming action. If each button zooms in on a different half of the display, then the user
can convey information at a rate of one bit per button press. We can’t do any better than
this.

up

down

1

1

2
+ s

1

2

s

(a) (b) (c)

FIGURE 2. Alternative ways in which two-button Dasher can work. (a) ‘Direct’ two-button Dasher.
Each button is associated with a zooming action: in–and–up, and in–and–down respectively. If these two
regions fill the current view without overlap then the system has the maximum possible information rate,
one bit per button press. For robustness, we imagine each target region is bigger, by an amount s, than the
ideal size of 1/2. The information rate is thus log(1/(s+1/2)) per button push. In this figure, we show
a representative painting of the Dasher world with little boxes associated with the text being written. We
emphasize that none of the navigation methods presented in this paper refer to those boxes. This paper
discusses navigation methods that will work for any language model. The language model’s sole job is
to arrange that the probability distribution of our destination is uniform over the right hand side of the
display. We omit the language model’s boxes from now on. (b) ‘Menu’ two-button interface. One button
is used to cycle through a list of options; the other button is used to select the highlighted option. In this
illustration, there are five options, each associated with a region of width (1/5 + s), where s is the small
robustness parameter. A menu-based interface has the advantage of allowing additional options (such as
zoom back, or stop) to be included at the end of the menu. (c) Menu with non-uniform-sized boxes. The
sizes of these six boxes are in a geometric progression.

For robustness, however, we have to allow the user a little lee-way. We pad each target
out with padding of thickness s (s/2 on either side). To make clear to the user the effect
of the two possible actions, we need only to ensure that the display includes a horizontal
dividing line at a height of 1/2. Direct two-button Dasher has the disadvantage that it
offers the user no alternatives apart from ‘up’ and ‘down’. One fix is to provide a third
button, for occasional use only, to enable zooming back out or other control functions
(such as changing to another application). In the absence of a third button, these control
functions can be included in the language model in the Dasher canvas. Such a control
mode is already available in Dasher. But we think that a second version of two-button
Dasher may be preferable.

In menu two-button Dasher (figure 2b,c), one button (‘rotate’) is used to cycle
between a set of B options. The other button is used to select the highlighted option.
In keeping with the Dasher philosophy, the options are not associated with the text
being written on the Dasher canvas. Rather, each option is associated with a particular
zooming action. The set of B options can be displayed simultaneously by overlaying B
light boxes on the Dasher canvas, of which one is highlighted. We arrange that pressing
the ‘rotate’ button B times returns the highlight to the first option in the list. While this
circular arrangement is slightly information-inefficient, we think it makes the interface
more user-friendly. Other non-zooming options can be included in the cycle.

We could give the alternative zooming-in options equal size on the screen (figure 2b),
but it is more information-efficient to have the first option in the list be more probable

(i.e., larger) than the second, and so forth (figure 2c). We will explore this issue in more
detail in a moment.

Which is better, direct or menu two-button Dasher? One concern with direct two-
button Dasher is that the user might require a little time to get oriented every time the
display zooms in. Thus while the most information-efficient two-button solution for an
ideal user is direct two-button Dasher, a real user might be able to go faster in menu
two-button Dasher. The menu approach allows each zooming event to zoom in by a
bigger factor, and thus allows the number of zooms to be reduced. We model a user
with three parameters: tr, the time taken to press the ‘rotate’ button; ts, the time taken
to press the ‘select’ button; and tt , the time required to take in the new view after a
zoom has occurred. The time tt might also include a delay imposed by the software,
if the zooming event takes a substantial time to render. For simplicity, we now assume
tr = ts = 1, and we use the delay tt and the number of boxes B as the two parameters to
explore the choice between these two versions of two-button Dasher. We consider two
versions of menu-Dasher, ‘uniform’, and ‘non-uniform’. In the uniform menu interface,
all boxes have size 1

B + s, where s is the small robustness parameter, here set to 0.05. In
the non-uniform menu interface, the sizes are {p1+s, p2+s, . . . , pB+s}, where ∑b pb = 1.
Our objective function is the user’s bit rate,

R =
I(p)

T (p)
, (2)

where the average number of bits per zoom is

I(p) = ∑
b

pb log2
1

pb + s
(3)

and, assuming the user always takes the shortest path to his target, the average time
between zooms is

T (p) = tt + ts + tr

[

∑
b

pb(b−1)

]

. (4)

In the special case of uniform menus, the objective function takes the value

Runiform(B, tt) =
log2(1/(1/B+ s))

tt + ts + 1
2(B−1)tr

. (5)

It is possible to optimize the objective function R with respect to p and the number
of boxes B, for a given user parameter tt . However, we are interested in finding a robust
solution that will work well across a range of values of tt . We therefore examine a simple
exponential family of solutions,

pb =
1

Z(C)
2−Ctr(b−1), (6)

where Z(C) = (1−aB)/(1−a), with a = 2−Ctr . Equation (6) gives the optimal solution
if the robustness parameter s is 0; at the optimum, the parameter C is identical to the

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 2 3 4 5 6 7 8 9

Direct

Uniform menu

Direct

Uniform menu

Non-uniform menu

Non-uniform menu

t=0.1

t=3.1

B
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 1 2 3 4

Direct
Uniform menu 2
Uniform menu 3
Uniform menu 5
Uniform menu 9

tt

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 1 2 3 4

Direct
Non-uniform menu 2
Non-uniform menu 3
Non-uniform menu 5
Non-uniform menu 9

tt(a) (b) (c)

FIGURE 3. Information rate for menu-style interfaces as a function of the number of menu boxes and
the delay parameter tt . Vertical axis: information rate in bits per unit time. Button presses take unit time.
(a) Information rate versus number of boxes, for two values of the delay parameter tt . The upper curves
(tt = 0.1) illustrate the relative merits of uniform and non-uniform menus if there is very little delay
associated with each zooming action: non-uniform menus can get very close to the information-rate of the
direct two-button interface; uniform menus with 3, 4, or 5 boxes can get within 15%. The lower curves
assume that there is a substantial pause (tt = 3.1) after each zoom: the user waits 3.1 times the duration of
a button press before pressing another button. In this case, both uniform and non-uniform menus can be
more than twice as good as the direct two-button interface. (b) Information-rates of menu-style interfaces
with uniformly-sized menu boxes as a function of the delay tt associated with each zoom. (c) Information-
rates of menu-style interfaces with non-uniformly-sized menu boxes. For all calculations the robustness
parameter s was set to 0.05.

bit rate I(p)/T (p) (MacKay, 2003, p. 125). We approximate the optimum non-uniform
solution for a given tt and B by iterating a couple of times the assignments of p (6) and
C = R (2), starting from C = Runiform(B, tt).

The resulting values of the objective function R(B, tt) are shown in figure 3.
Figure 3a shows that, if there is very little delay associated with each zoom (tt = 0.1),

then the direct two-button solution has the best information rate (R = 0.78): but non-
uniform menus with B = 4, 5, 6, or 7 boxes can get very close (these solutions have
boxes whose sizes are roughly 1/2, 1/4, 1/8, . . .); uniform menus with 3, 4, or 5 boxes
can also get within 15% of the best solution.

What if we assume there is a substantial pause (tt = 3.1) after each zoom? (So the user
waits for three times the duration of a button press before pressing another button.) In
this case, the lower curves in figure 3a show that both uniform and non-uniform menus
can be more than twice as good as the direct two-button solution.

Figure 3b shows the dependence of the uniform menu system’s information rate on tt
for different numbers of boxes. Figure 3c shows equivalent curves for the non-uniform
menu system.

Now, imagine that we wish to make a single piece of software that does a good job for
users with a range of values of tt/tr. We could make an interface whose parameters B and
p adapt optimally to the measured properties of the user. But, for simplicity, can we find
a fixed setting of B and p that gives good performance across the board? After inspecting
figure 3, we selected one uniform and one fixed non-uniform menu solution whose
performance looks good for tt/tr ranging from 0 to 4 (figure 4). The uniform solution has
B = 5. The non-uniform solution has parameters B = 6, p ' {.33, .24, .17, .12, .09, .06}.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 1 2 3 4

Non-uniform menu 6 (fixed)
Non-uniform menu 9

Uniform menu 5
Uniform menu 3

Direct

tt
FIGURE 4. Information-rate (in bits per unit time) of a fixed non-uniform menu-system with six boxes
as a function of the parameter tt . Also highlighted is the uniform five-box menu interface. For comparison,
good menu systems from figure 3 are shown with lighter lines.

(a)

short

long

(b)

up

down

1 s

FIGURE 5. (a) Two-button Dasher modified for a single-button user who can make short and long
presses. (b) Dasher for the blind. At each step, the system identifies a string whose interval lies entirely
in the interval (0.5− s/2,0.5+ s/2), as illustrated by the small highlighted box; any such string will do,
but the best choice of string might be the most probable one that is pronounceable. This string is read to
the user. The user selects between the two targets according to whether the desired string is alphabetically
above or below that string.

We propose to include in the cycle of options a ‘zoom-out’ option that zooms straight
out by a factor of 1/(pmax + s), where pmax is the biggest probability.

Two-button Dasher could also be used by a single-button user who can make short
and long presses. The menu system could be used with short presses mapped to ‘rotate’
and long presses to ‘select’. The direct two-button method would be optimized by giving
the short press a larger target area than the long (figure 5a).

Dasher for the blind

Dasher was conceived as an intensely visual communication interface, but direct two-
button Dasher could nevertheless be used in an auditory mode. At each step, the interface
reads to the user a piece of text whose Dasher-interval is wholly contained in the interval
of width s surrounding the centre of the display – the interval marked by the small arrow
in figure 5b. The user then decides whether her intended piece of text is alphabetically

c
b

a

c
b

a

c
b

a

a a
(a) (b) (c) (d) (e)

FIGURE 6. Proposal for noisy two-button Dasher, for use in brain–computer interfaces, for example. If
the user wishes to enter the top box, he presses the light button at step (a), the dark at step (b), and the light
at step (c). This sequence is not unique to the top box; the fourth box has the same sequence. And because
of the possibility of noise, the system must assign some probability to other targets too. At some point,
the system may judge that the posterior probability is sufficiently concentrated that the view can zoom in
on a region of the display, as shown in (d). The process continues with a new random colouring (e), which
may be chosen to distinguish between the most probable hypotheses (here, the regions associated with the
original first and fourth squares).

before or after the piece of text that is read to her, and presses ‘up’ or ‘down’ accordingly.
Once the piece of text to be read is longer than a few words, it would probably suffice
to read the last few words only. Such a system might be useful for a blind person who
cannot speak or type, but who can hear, and press buttons.

Two or more noisy buttons

If a user’s button presses are noisy – with the wrong button being pressed occasionally
– then a radical redesign is required. We propose the following solution. The user is
presented with a Dasher canvas. Superposed on the Dasher canvas are B boxes, just like
the B boxes in uniform-menu two-button Dasher, though the number of boxes should be
quite large, perhaps 16. (Each box should be viewed as having a cushion of width s/2
surrounding it, though for display purposes, the cushion may be omitted.) These boxes
are pseudorandomly coloured with K colours (figure 6a), where K is the number of
buttons available to the user. To avoid obscuring the features of the Dasher landscape, the
coloured boxes could be placed adjacent to the Dasher canvas instead of on it. The user
is asked to choose her destination box by pressing the appropriate button. We assume she
does this noisily. A Bayesian inference is used to update the probability distribution of
the user’s intended destination. If she presses the light button rather than the dark button,
say, and the noise level is f , then all boxes that are currently light get their posterior odds
increased by a factor (1− f)/ f . If side-information is available that reveals how reliable
each individual press is (in the form of a likelihood function) then this information can
be used in the inference.

After the Bayesian inference, the system should decide whether it is safe to zoom in
at all. Multiple presses will often be required before a move takes place. Zooming-in
is safe only if the probability mass associated with the region zoomed in on is above
some threshold such as 0.99. Let’s assume no zooming is currently possible. The system

 1

 10

 100

 1 10 100

1/beta

D/g
 0.01

 0.1

 1

 1 10 100
D/g

 1

 10

 1 10 100
D/g(a) (b) (c)

FIGURE 7. Capacity of a single button. (a) The optimal value of 1/β as a function of the delay-to-
precision ratio D/g. As a guide to the eye, the line y = x is also shown. 1/β is the mean time the user
waits, after the delay D, before clicking. (b,c) The capacity of the channel, in bits per duration g, and bits
per duration D, respectively.

presents a new pseudorandom colouring of the landscape to the user (figure 6b), and
gets more noisy data from her. The system can choose each pseudorandom colouring in
a way that depends on the current probability distribution of the destination – so as to
maximize the expected amount of information from the user, or to minimize the expected
time until a significant zoom can be made.

Eventually, a zoom onto a particular region will become safe. This zoom will not
necessarily be a zoom right into one of the B boxes; it might be a lesser zoom that
zooms in on a collection of boxes that includes the most probable boxes and a few others
(figure 6d). When this zoom is made, the zoomed-in region is immediately coloured with
boxes in the same way as before (figure 6e).

To allow the possibility of zooming back when mistakes are made, an additional
target can be included somewhere on the display, whose meaning is ‘none of the current
boxes’. This target can be randomly coloured, and its probability updated, just like the
other targets. If the probability of this target gets big, then the display can zoom back
and revive hypotheses that had been judged unlikely. This system will make progress
in a way similar to the sequential decoding algorithm for tree codes (Johannesson and
Zigangirov, 1999).

There is another possibility: the inferences about the user’s destination could be used
to update the probabilities within Dasher’s own language model. However, we expect
that it is more user-friendly to keep the Dasher landscape as a non-deforming world in
which the user moves her point of view.

ONE-BUTTON DASHER

For the simplest model of a single-button user, we assume that the user controls only
the times of presses, not the times of releases. We model the user with two parameters:
a timing accuracy g, and a recovery time D. The user clicks within a time ±g/2 around
each intended click time, and then requires a delay of duration D before she can click
again. Before describing our two proposed versions of one-button Dasher, we compute
the capacity of the channel as a function of the parameters D and g.

φ

(a) (b)

FIGURE 8. How static one-button Dasher works. (a) A pointer appears from one side of the display.
As long as the user doesn’t click, the pointer sweeps to and fro over the range of possible destinations. (b)
The user clicks when the pointer is alongside his required destination. The display zooms in on a fraction
φ surrounding the pointer, and the process repeats.

We estimate the capacity by chopping time into boxes of duration g. We write the
probability that the user waits for a time D+ng from one click to the next as

pn = (1−β)nβ , n ∈ {0,1, . . .}. (7)

[MacKay (2003, p. 125) explains why the optimal probability has this form.] The mean
time to the next press is D+g/β , and the average information content generated by the
selection of a waiting time n is the entropy of p,

H2(β)/β bits. (8)

The rate of information generation is thus

R(β) =
H2(β)

βD+g
. (9)

Figure 7 shows the optimal value of 1/β and the capacity as a function of the delay-to-
precision ratio D/g.

We propose two versions of one-button Dasher, ‘static’ and ‘dynamic’.
Static one-button Dasher behaves rather like a continuous version of two-button

menu-Dasher, or the ‘EZ keys’ software (www.words-plus.com). Between clicks,
the Dasher display is stationary, and a pointer sweeps up and down the screen. When
the user clicks the button, the display zooms in on the region surrounding the pointer
(figure 8).

Static one-button Dasher has two parameters: the time E taken for the pointer to pass
across the Dasher canvas once, and the fraction of the display φ into which we zoom. We
assume that the user’s clicks are uniformly distributed in an interval ±g/2 around the
intended click time. We fix E as a function of φ and the clicking accuracy g: E = g/φ .
If we zoom in on a fraction φ , we generate information at a rate of log2 1/φ bits per
click. We define β = 2φ . The average time between clicks is D + E/2 = D + g/β , if
the pointer always starts from one edge of the display, and there is a recovery-time D
between clicks.

 1

 10

 100

 1 10 100

1/beta

D/g
 0.01

 0.1

 1

 1 10 100

Capacity
Static Rate

D/g

 1

 10

 1 10 100

Capacity
Static Rate

D/g(a) (b) (c)

FIGURE 9. Optimized performance of static one-button Dasher. (a) The optimal value of 1/β as a
function of the delay-to-precision ratio D/g. As a guide to the eye, the line y = x is also shown. 1/β is
the mean time (in units of g) that the user waits, after the delay D, before clicking. This chart should be
used to set the parameters of static Dasher as a function of D and g: E = (2/β)g, and φ = β/2. (b,c) The
rate of communication, in bits per duration g and bits per duration D, respectively. The channel capacity
is also shown.

The information rate achieved by static one-button Dasher is thus

R(β) =
log2(2/β)

D+g/β
, (10)

which is maximized with respect to β when

D
g

=
1
β

[

ln

(

2
β

)

−1

]

. (11)

According to the resulting information rate, plotted in figure 9, static one-button Dasher
appears to be able to get within 10% of the channel capacity.

Dynamic one-button Dasher also features a moving pointer that sweeps to and fro
across the display. Unlike static Dasher, dynamic Dasher moves all the time, with the
direction of motion being controlled by the current pointer position. The user’s clicks
reverse the direction of motion of the pointer. Dynamic one-button Dasher does not
exploit high temporal accuracy, so it is expected to be useful only for users whose ratio
D/g is small.

Dynamic one-button Dasher has two parameters, the zooming rate z of the interface
(in nats per second), and the sweeping rate r of the pointer. [The zooming rate in bits
per second, z2, is z2 = z/ ln2.] 1/r is the time taken for the pointer to sweep across the
unit width of Dasher display. We now calculate what values z and r can take for a user
whose minimum time between clicks is D.

Imagine that the target is at vertical coordinate y(t) at time t, and the pointer is
associated with vertical coordinate p(t). Then Dasher’s dynamics, zooming at rate z,
will move y away from the pointer in accordance with

ẏ = z(y− p). (12)

The pointer position obeys ṗ = ±r, with sign determined by the user’s clicks. The user
tries to keep the gap |y− p| small. How big can z be without |y− p| diverging? The

critical value of |y− p| is r/z; any bigger, and the gap grows exponentially. If the user
clicks optimally, the biggest that the gap can become in time t is rt(1+ zt/2), to leading
order. Setting t = D, we find the maximum possible zooming rate is zcrit =

√
3−1/D '

0.73/D, independent of r, and thus the communication rate is bounded by

Rmax =
0.73
ln2

' 1.05 bits per duration D. (13)

Having fixed the zooming rate z, the rotation rate r should be set such that the critical
value of |y − p| = r/z is comfortably large – bigger than the display width, 1, for
example. We recommend setting r ' z.

Comparing the maximum bit rate of dynamic one-button Dasher with the curves for
static Dasher (figure 9), we predict that faster communication will be achieved with
static Dasher by any user whose ratio of recovery time D to clicking precision g exceeds
2. Since the user is free to do nothing for a while, static Dasher will probably feel a
less demanding interface than dynamic Dasher, which requires perpetual attention and
control. To make dynamic Dasher feel safer, we map the extreme pointer positions to
Dasher’s origin, so that when the user is inactive, Dasher shortly stops moving.

If the user is able to distinguish between short and long presses, then the capacity
increases by up to one bit per button press. Can either of our interfaces exploit this
capacity? We have augmented dynamic Dasher such that long presses increase the
rotation rate r, for the duration of the press. Static Dasher could have two pointers,
sweeping over separate regions in the display; a short or long press would zoom in on
the upper or lower pointer, respectively.

Dasher is free software, distributed under the GNU General Public License, and
available from www.inference.phy.cam.ac.uk/dasher/.

ACKNOWLEDGMENTS

We thank Caroline Gray, David Colven, Iain Murray, and Matthew Garrett for helpful
discussions, and Kimber Gross for comments on the manuscript.

We gratefully acknowledge the support of the Gatsby Charitable Foundation.

REFERENCES

Witten, I. H., Neal, R. M., and Cleary, J. G., Arithmetic coding for data compression, Communications
of the ACM, 30, 520–540 (1987).
MacKay, D. J. C., Information Theory, Inference, and Learning Algorithms, Cambridge University
Press (2003). Available from www.inference.phy.cam.ac.uk/mackay/itila/.
Cleary, J. G., and Witten, I. H., Data compression using adaptive coding and partial string matching,
IEEE Trans. on Communications, 32, 396–402 (1984).
Teahan, W. J., Probability estimation for PPM. In Proc. of the N.Z. Comp. Sci. Research Students’
Conf. (1995). Available from citeseer.nj.nec.com/teahan95probability.html.
Ward, D. J., Blackwell, A. F., and MacKay, D. J. C., Dasher – A data entry interface using continuous
gestures and language models, Human-Computer Interaction, 17 (2002).
Ward, D. J., and MacKay, D. J. C., Fast hands-free writing by gaze direction, Nature, 418, 838 (2002).

Johannesson, R., and Zigangirov, K. S., Fundamentals of Convolutional Coding, IEEE Press, Piscat-
away, N.J. (1999).

First published July 18, 2004. Version 3.2 – June 22, 2005
Appeared in Bayesian Inference and Maximum Entropy Methods

in Science and Engineering, proceedings of Maximum Entropy and Bayesian Methods,
2004. (Minor corrections made Wed 22/6/05; thanks to Satoshi Koyama.)

