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ABSTRACT. 1 define a latent variable model in the form of a neural network for which only
target outputs are specified; the inputs are unspecified. Although the inputs are missing, it is still
possible to train this model by placing a simple probability distribution on the unknown inputs and
maximizing the probability of the data given the parameters. The model can then discover for itself
a description of the data in terms of an underlying latent variable space of lower dimensionality. 1
present preliminary results of the application of these models to protein data.

1 Density Modelling

The most popular supervised neural networks, multilayer perceptrons (MLPs), are well
established as probabilistic models for regression and classification, both of which are con-
ditional modelling tasks: the input variables are assumed given, and we condilion on their
values when modelling the distribution over the output variables; no model of the density
over input variables is constructed. Density modelling (or generative modelling), on the
other hand, denotes modelling tasks in which a density over all the observable quantities is
constructed. Multi-layer perceptrons have not conventionally been used to create density
models (though belief networks and other neural networks such as the Boltzmann machine
do define density models). Various interesting research problems in this field relate to the
difficulty of defining a full probabilistic model with an MLP. For example, if some inputs
in a regression problem are ‘missing’, then traditional methods offer no principled way of
filling the gaps. This paper discusses how one can use an MLP as a density model.

TRADITIONAL DENSITY MODELS

A popular class of density models are mizture models, which define the density as a sum
of simpler densities. Mixture models might however be viewed as inappropriate models for
high-dimensional data spaces such as images or genome sequences. The number of com-
ponents in a mixture model has to scale exponentially as we add independent degrees of
freedom. Consider, for example, a protein family in which there is a strong correlation be-
tween the amino acids in the first and second columns — they are either both hydrophobic,
or both hydrophilic, say — and there is an independent correlation between two other amino
acids elsewhere in the protein chain — when one of them has a large residue the other has
a small residue, say. A mixture model would have to use four categories to capture all four
combinations of these binary attributes, whereas only two independent degrees of freedom
are really present. Thus a combinatorial representation of underlying variables would seem
more appropriate. [Luttrell’s (1994) partitioned mixture distribution is motivated similarly,
but is a different form of quasi-probabilistic model.]



These observations motivate the development of density models that have components
rather than categories as their ‘latent variables’ (Everitt 1984; Hinton and Zemel 1994).
Let us denote the observables by t. If a density is defined on the latent variables x, and a
parameterized mapping is defined from these latent variables to a probability distribution
over the observables P(t|x,w), then when we integrate over the unknowns x, a non-trivial
density over t is defined, P(t|w) = [ dx P(t|x,w)P(x). Simple linear models of this form
in the statistics literature come under the label of ‘factor analysis’. In a ‘density network’
(MacKay 1995) P(t|x,w) is defined by a more general non-linear parameterized mapping,
and interesting priors on w may be used.

THE MODEL

The ‘latent inputs’ of the model are a vector x indexed by h = 1...H (‘h’ mnemonic for
‘hidden’). The dimensionality of this hidden space is H but the effective dimensionality
assigned by the model in the output space may be smaller, as some of the hidden dimensions
may be effectively unused by the model. The relationship between the latent inputs and
the observables, parameterized by w, has the form of a mapping from inputs to outputs
y(x;w), and a probability of targets given outputs, P(t|y). The observed data are a set
of target vectors D = {t(¥})_,. To complete the model we assign a prior P(x) to the
latent inputs (an independent prior for each vector x(™)) and a prior P(w) to the unknown
parameters. [In the applications that follow the priors over w and x(") are assumed to
be spherical Gaussians; other distributions could easily be implemented and compared, if
desired.] In summary, the probability of everything is:

P(D, {x"}, wi) = [T [P ™), w, 1) P(x|H) | P(w|H) (1)

n

It will be convenient to define ‘error functions’ G*) (x; w) as follows:
G (x; w) = log Pt x(") w) (2)

The function G depends on the nature of the problem. If t consists of real variables
then G’ might be a sum-squared error between t and y; in a ‘softmax’ classifier where the
observations t are categorical, G is a ‘cross entropy’. In general we may have many output
groups of different types. The following derivation applies to all cases. Subsequently this
paper concentrates on the following form of model, which may be useful to have in mind.
The observable t = {t,}5_, (e.g., a single protein sequence) consists of a number S of
categorical attributes that are believed to be correlated (S will be the number of columns
in the protein alignment). Each attribute can take one of a number I of discrete values, a
probability over which is modelled with a softmax group (e.g., I = 20).

S
P(t]x,w) = l:[ {ys, (x;w)} (3)

where
s eaf(x;w)
Y; (X§ W) = W (4)



The parameters w form a matrix of (H 4+ 1) x S x I weights from the H latent inputs x
(and one bias) to the S x I outputs:

H
ai(x;w) = wiy + Y whas (5)
h=1

The data items t are labelled by an index n = 1...N, not included in the above equations,
and the error function G is
= Z log Yy - (6)

Having written down the probability of everything (equation 1) we can now make any
desired inferences by turning the handle of probability theory. Let us aim towards the
inference of the parameters w given the data D, P(w|D, ). We can obtain this quantity
conveniently by distinguishing two levels of inference.

Level 1: Given w and t(")| infer x("), The posterior distribution of x(™) is
Pt |x() w, #1)P(x"™|H)
Pt |w, H) ’

P w H) =
where the normalizing constant is:
Pt |w, H) = / AT x™ P x| w, 3) P(x™|H). (8)

Level 2: Given D = {t("}, infer w.

P(Dlw. 1) P(w[H) o)
P(D|H)

The data-dependent term here is a product of the normalizing constants of the level 1

inferences:

P(w|D,H) =

P(D|w,H) H PE™|w,H). (10)

The evaluation of the evidence P( |W, 7—[) for a particular n is a problem similar to
the evaluation of the evidence for a supervised neural network (MacKay 1992). There,
the inputs x are given, and the parameters w are unknown; we obtain the evidence by
integrating over w. In the present problem, on the other hand, the hidden vector x(™ is
unknown, and the parameters w are conditionally fixed. For each n, we wish to integrate
over x(") to obtain the evidence.

LEARNING: THE DERIVATIVE OF THE EVIDENCE WITH RESPECT TO W

The derivative of the log of the evidence (equation 8) is:

d 1

i (n) - - H . (1) (- Y (n) (-

5 log P(t"™|w,H) = PEw, )/d x exp(G (x,w))P(x|7—l)8 G (x;w)
= /de P(x|t(”),w,7-l)aiG(”)(x;w). (11)

This gradient can thus be written as an expectation of the traditional ‘backpropagation’
gradient %G(”)(x; w), averaging over the posterior distribution of x(") found in equation

(7).



HIGHER LEVELS — PRIORS ON W

We can continue up the hierarchical model, putting a prior on w with hyperparameters
{a} which are inferred by integrating over w. These priors are important from a practical
point of view to limit overfitting of the data by the parameters w. These priors will also
be used to bias the solutions towards ones that are easier for humans to interpret.

EVALUATION OF THE EVIDENCE AND ITS DERIVATIVES USING SIMPLE MONTE CARLO

The evidence and its derivatives with respect to w both involve integrals over the hidden
components x. For a hidden vector of sufficiently small dimensionality, a simple Monte
Carlo approach to the evaluation of these integrals can be effective.

Let {x(")}%_| be random samples from P(x). Then we can approximate the log evidence

by:

log P({t"}|lw, H) = Zlog/dHX exp(G"(x; w)) P(x)

o Zlog [%Zexp(G”(x(r);w)) .

Similarly the derivative can be approximated by:

0 > exp(G”(x(T); w)) 0 G”(x(r); w)
—lo )| w ~ g W
ow log P({t™}|w, 7) ~ >, exp(G”(x(f‘); w)). (12)

This simple Monte Carlo approach loses the advantage that we gained when we rejected
mixture models and turned to componential models; this implementation of the compo-
nential model requires a number of samples R that is exponential in the dimension of the
hidden space H. More sophisticated methods using stochastic dynamics (Neal 1993) are
currently under development.

ALTERNATIVE IMPLEMENTATIONS

An alternative approach to making such componential models scale well is the free energy
minimization approximation of Hinton and Zemel (1994). They introduce a distribution
Q™ (x) that is intended to be similar to the posterior distribution P(x|t""), w, H); @ is writ-
ten as a nonlinear function of the observable t(®); the parameters of this nonlinear function
are then optimized so as to make Q" (x) the best possible approximation to P(x|t"™), w, })
(for all n) as measured by a free energy, >, [dx Qlog(Q/P). This method gives an ap-
proximate lower bound for the log evidence. If R random samples {x(")}E | from Q(x) are
made, then:

log P(t™|w, H) = log / dx exp(G™(x; w))P(x)
[P(x)e )]

Q(x)
< %z (G (x:w) + log P(x)  log Q(x)] .

< /dx Q(x) log



An alternative formula for estimating the evidence is given by importance sampling:

Px)
Q"(x)

log P(t™|w, ) ~ log %Zexp((}”(x;w))

2 A componential density model for a protein family

A protein is a sequence of amino acids. A protein family is a set of proteins believed to
have the same physical structure but not necessarily having the same sequence of amino
acids. In a multiple sequence alignment, residues of the individual sequences which occupy
structurally analogous positions are aligned into columns. There are twenty different amino
acids, and columns can often be characterized by a predominance of particular amino acids.
Lists of marginal frequencies over amino acids in different structural contexts are given in
(Nakai et al. 1988).

The development of models for protein families is useful for two reasons. The first is that
a good model might be used to identify new members of an existing family, and discover
new families too, in data produced by genome sequencing projects. The second reason is
that a sufficiently complex model might be able to give new insight into the properties
of the protein family; for example, properties of the proteins’ tertiary structure might be
elucidated by a model capable of discovering suspicious inter-column correlations.

The only probabilistic model that has so far been applied to protein families is a hidden
Markov model (Krogh et al. 1994). This model is not inherently capable of discovering
long-range correlations, as Markov models, by definition, produce no correlations between
the observables, given a hidden state sequence.

The next-door neighbour of proteins, RNA, has been modelled with a ‘covariance model’
capable of capturing correlations between base-pairs in anti-parallel RNA strands (Eddy
and Durbin 1994). The aim of the present work is to develop a model capable of discovering
general correlations between multiple arbitrary columns in a protein family. E. Steeg (per-
sonal communication) has developed an efficient statistical test for discovering correlated
groups of residues. The present work is complementary to Steeg’s in that (1) in the density
network, a residue may be influenced by more than one latent variable; whereas Steeg’s test
is specialised for the case where the correlated groups are non-overlapping; (2) the density
networks developed here define full probabilistic models rather than statistical tests.

Here I model the protein families using a density network containing one softmax group
for each column (see equations 3-6). The network has only one layer of weights connecting
the latent variables x directly to the softmax groups. I have optimized w by evaluating the
evidence and its gradient and feeding them into a conjugate gradient routine. The random
points {x(r)} are kept fixed, so that the objective function and its gradient are deterministic
functions during the optimization. This also has the advantage of allowing one to get away
with a smaller number of samples R than might be thought necessary, as the parameters
w can adapt to make the best use of the empirical distribution over x.

REGULARIZATION SCHEMES

A human prejudice towards comprehensible solutions gives an additional motivation for
regularizing the model, beyond the usual reasons for having priors. Here I encourage the
model to be comprehensible in two ways:



1. There is a redundancy in the model regarding where it gets its randomness from. Assume
that a particular output is actually random and uncorrelated with other outputs. This
could be modelled in two ways: its weights from the latent inputs could be set to zero,
and the biases could be set to the log probabilities; or alternatively the biases could
be fixed to arbitrary values, with appropriate connections to unused latent inputs being
used to create the required probabilities, on marginalization over the latent variables. In
predictive terms, these two models would be identical, but we prefer the first solution,
finding it more intelligible. To encourage such solutions I use a prior which weakly
regularizes the biases, so that they are ‘cheap’ relative to the other parameters.

2. If the distribution P(x) is rotationally invariant, then the predictive distribution is in-
variant under corresponding transformations of the parameters w. If a solution can
be expressed in terms of parameter vectors aligned with some of the axes (i.e. so that
some parameters are zero), then we would prefer that representation. Here | create
a non-spherical prior on the parameters by using multiple undetermined regularization
constants {a.}, each one associated with a class of weights (c.f. the automatic relevance
determination model (MacKay and Neal 1994)). A weight class consists of all the weights
from one latent input to one softmax group, so that for a protein with S columns mod-
elled using H latent variables, I introduced S H regularization constants, each specifying
whether a particular latent variable has an influence on a particular column. Given
o, the prior on the parameters in class ¢ is Gaussian with variance 1/a.. This prior
favours solutions in which one latent input has non-zero connections to all the units in
some softmax groups (corresponding to small «.), and negligible connections to other
softmax groups (large a.). The resulting solutions can easily be interpreted in terms of
correlations between columns.

METHOD FOR OPTIMIZATION OF HYPERPARAMETERS

For given values of {a.}, the parameters w were optimized to maximize the posterior prob-
ability. No explicit Gaussian approximation was made to the posterior distribution of w;
rather, the hyperparameters {a.} were adapted during the optimization of the parameters
w, using a cheap and cheerful method motivated by Gaussian approximations (MacKay
1992), thus:

kC
ZiEC w22
Here k. is the number of parameters in class ¢ and [ is a ‘fudge factor’ incorporated to
imitate the effect of integrating over w (set to a value between 0.1 and 1.0).

This algorithm could be converted to a correct ‘stochastic dynamics’ Monte Carlo
method (Neal 1993) by adding an appropriate amount of noise to gradient descent on
w and setting f = 1.

.= f (13)

Toy DATA

A toy data set was created imitating a protein family with four columns each containing
one of five amino acids. The 27 data (table 1) were constructed to exhibit two correlations
between the columns: the first and second columns have a tendency both to be amino acid
E together. The third and fourth columns are correlated such that if one is amino acid B,



EEAB EECB EEBC EECC EEAA EEBA EEBB EECD
EEDC EEDD AACD DDDC CBDD CCAB BDCB ABBC
CBCC EDAA ABBA BCBB DBAB AECB EBBC BDCC
BCAA DABA BCBB

Table 1: Toy data for a protein family

then the other is likely to be A, B or C; if one is C, then the other is likely to be B, C
or D; and so forth, with an underlying single dimension running through the amino acids
A.B,C,D. The model is given no prior knowledge of the ‘spatial relationship’ of the columns,
or of the ordering of the amino acids. A model that can identify the two correlations in the
data is what we are hoping for.

Both regularized and unregularized density networks having four latent inputs were
adapted to this data. Unregularized density networks give solutions that successfully predict
the two correlations, but the parameters of those models are hard to interpret (figure 1a).
There is also evidence of overfitting of the data leading to overconfident predictions by
the model. The regularized models, in which all the parameters connecting one input
to one softmax group are put in a regularization class with an unknown hyperparameter
«., give interpretable solutions that clearly identify the two correlated groups of columns.
Figure 1b shows the hyperparameters and parameters inferred in a typical solution using
a regularized density network. Notice that two of the latent inputs are unused in this
solution. Of the other two inputs, one has an influence on columns 1 and 2 only, and the
other has an influence on columns 3 and 4 only. Thus this model has successfully revealed
the underlying ‘structure’ of the proteins in this family.

RESULTS ON REAL DATA: BETA SHEETS

Beta sheets are structures in which two parts of the protein engage in a particular hydrogen—
bonding interaction. It would greatly help in the solution of the protein folding problem if
we could distinguish correct from incorrect alignments of beta strands.

Data on aligned antiparallel beta strands was provided by Tim Hubbard. N = 1000
examples were taken. Density networks with H =6 latent inputs were used to model the
joint distribution of the twelve residues surrounding a beta sheet hydrogen bond. Our prior
expectation is that if there is any correlation among these residues, it is likely to reflect
the spatial arrangement of the residues, with nearby residues being correlated. But this
prior expectation was not included in the model. The hope was that meaningful physical
properties such as this would be learned from the data.

ANALYSIS

The parameters of a typical optimized density network are shown in figure 2.

The parameter vectors were compared, column by column, with a large number of
published amino acid indices (Nakai et al. 1988) to see if they corresponded to established
physical properties of amino acids. Each index was normalized by subtracting the mean
from each vector and scaling it to unit length. The similarity of a parameter vector to an
index was then measured by the magnitude of their inner product.



Figure 1: Parameters and Hyperparameters inferred for the toy protein family
a) Hinton diagram showing parameters w of model optimized without adaptive regularizers. Positive
parameters are shown by black squares, negative by white. Magnitude of parameter is proportional
to square area. This diagram shows, in the five grey rectangles, the projective fields from the bias

and the four latent variables to the outputs. In each grey rectangle the influences of one latent
variable on the twenty outputs are arranged in a 5x4 grid: in each column the 5 output units
correspond to the 5 amino acids. It is hard to interpret these optimized parameters.

b) The hyperparameters and parameters of a hierarchical model with adaptive regularizers. The
results are more intelligible and show a model that has discovered the two underlying dimensions of
the data. Hyperparameters: Each hyperparameter controls all the influences of one latent variable
on one column. Square size denotes the value of 02 = 1/a on a log scale from 0.001 to 1.0. The
model has discovered that columns 1 and 2 are correlated with each other but not with columns 3
and 4, and vice versa. Parameters: same conventions as (a). Note the sparsity of the connections,
making clear the two distinct underlying dimensions of this protein family.

Two distinctive patterns reliably emerged in most adapted models, both having a mean-
ingful physical interpretation. First, an alternating pattern can be seen in the influences
in the third rectangle from the left. The influences on columns 2, 4, 9 and 11 are similar
to each other, and opposite in sign to the influences on columns 3, 5, 10 and 12. This
dichotomy between the residues is physically meaningful: residues 2, 4, 9 and 11 are on the
opposite side of the beta sheet plane from residues 3, 5, 10 and 12; when these influence
vectors were compared with the published amino acid indices, they showed the greatest
similarity to Nakai et al.’s (1988) indices 57, 17, 7 and 42, which respectively describe the
amino acids’ polarity, the proportion of residues 100% buried, the transfer free energy to
surface, and the consensus normalized hydrophobicity scale. This latent variable has clearly
discovered the inside—outside characteristics of the beta sheet structure: either one face of
sheet is exposed to the solvent (high polarity) or the other face, but not both.

Second, a different pattern is apparent in the second rectangle from the right. Here
the influences on residues 4, 5, 6, 7, 8 are similar and opposite to the influences on 11,
12, 1, 2. For five of these residues the influence vector shows greatest similarity with index
number 21, the normalized frequency of beta-turn. What this latent variable has discovered,



Figure 2: Parameters w of an optimized density network modelling aligned an-

tiparallel beta strands.

In each grey rectangle the twelve columns represent the twelve residues surrounding a beta hydrogen
bond. The twenty rows represent the twenty amino acids, in alphabetical order (A,C,D,...). Each
rectangle shows the influences of one latent variable on the 12 x 20 probabilities.

The top left rectangle shows the biases of all the output units. There is an additional 21st row
in this rectangle for the biases of the output units corresponding to ‘no amino acid’. The latent
variables were defined to have no influence on these outputs to inhibit the wasting of latent variables
on the modelling of dull correlations. The other six rectangles contain the influences of the 6 latent
variables on the output units, of which the second and fifth are discussed in the text.

therefore, is that a beta turn may happen at one end or the other of two anti-parallel beta
strands, but not both.

Both of these patterns have the character of an ‘exclusive-or’ problem. One might imag-
ine that an alternative way to model aligned beta sheets would be to train a discriminative
model such as a neural network binary classifier to distinguish ‘aligned beta sheet’ from not
aligned beta sheet. However, such a model would have difficulty learning these exclusive-or
patterns. Exclusive-or can be learnt by a neural network with one hidden layer and two
layers of weights, but it is not a natural function readily produced by such a network. In
contrast these patterns are easily captured by the density networks presented here, which
have only one layer of weights.

It is interesting to note that the two effects discovered above involve competing corre-
lations between large numbers of residues. The inside-outside latent variable produces a
positive correlation between columns 4 and 11, for example, while the beta turn latent vari-
able produces a negative correlation between those two columns. These results, although
they do not constitute new discoveries, suggest that this technique shows considerable
promise.

FUTURE WORK

More complex models under development will include additional layers of processing be-
tween the latent variables and the observables. If some of the parameters of a second layer
were communal to all columns of the protein, the model would be able to generalize amino
acid equivalences from one column to another.

It would be interesting to attempt to represent protein evolution as taking place in the
latent variable space of a density network.

It is hoped that a density network adapted to beta sheet data will eventually be useful



for discriminating correct from incorrect alignements of beta strands. The present work is
not of sufficient numerical accuracy to achieve this, but possibly by introducing superior
sampling methods in tandem with free energy minimization (Hinton and Zemel 1994), these
models may make a contribution to the protein folding problem.
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