1

Density Networks

David J.C. MacKay and Mark N. Gibbs
Cavendish Laboratory, Madingley Road,
Cambridge, CB3 0HE. United Kingdom.

mackay@mrao.cam.ac.uk, mngl0@mrao.cam.ac.uk

A density network is a neural network that maps from unobserved
inputs to observable outputs. The inputs are treated as latent vari-
ables so that, for given network parameters, a non—trivial probability
density is defined over the output variables. This probabilistic model
can be trained by various Monte Carlo methods. The model can dis-
cover a description of the observed data in terms of an underlying
latent variable space of lower dimensionality. We review results of
the application of these models to toy problems with categorical and
real—valued observables and to protein data.

1 Density Modelling

The most popular supervised neural networks, multilayer perceptrons, are well
established as probabilistic models for regression and classification, both of which
are conditional modelling tasks: the input variables are assumed given, and
we condition on their values when modelling the distribution over the output
variables; no model of the density over input variables is constructed. Density
modelling (or generative modelling), on the other hand, denotes modelling tasks
in which a density over all the observable quantities is constructed. Multi-layer
perceptrons have not conventionally been used to create density models (though
belief networks and other neural networks such as the Boltzmann machine do
define density models). This paper discusses how one can use an multilayer
perceptron as a density model. This definition of a full probabilistic model with
a multilayer perceptron may prove also useful for other interesting problems, for
example, the ‘missing inputs’ problem (Tresp, Ahmad and Neuneier 1994).

1.1 Traditional density models

A popular class of density models are mizture models, which define the probabil-
ity distribution over observables t as a sum of simple densities. These models are
Qatent variable’ models (Everitt 1984); each observation t(™) has an associated
categorical latent variable ¢(™ that states which class of the mixture that ob-
servation comes from. These latent variables {c(™} are not observed, but their

2 D.J.C. MacKay and M.N. Gibbs

values are inferred during the modelling process.

Mixture models might however be viewed as inappropriate models for high—
dimensional data spaces such as images or genome sequences. If we imagine
modelling a sequence of densities with increasing numbers of independent de-
grees of freedom, the number of required components in a mixture model has to
scale exponentially. Consider, for example, a protein family in which there are
two independent correlations: one pair of amino acids in the protein chain are
either both hydrophobic, or both hydrophilic, say, and two other amino acids
elsewhere in the chain have anticorrelated size. A mixture model would have
to use four categories to capture the four valid combinations of these binary
attributes, whereas only two independent degrees of freedom are really present.
Thus a combinatorial representation of underlying variables would seem more
appropriate. [Luttrell’s (1994) partitioned mixture distribution is motivated sim-
ilarly, but is a different form of quasi—probabilistic model.]

These observations motivate the development of density models that have
components rather than categories as their latent variables (Hinton and Zemel
1994). Let us denote the observables by t. If a density is defined on the latent
variables x, and a parameterized mapping is defined from these latent variables
to a probability distribution over the observables P(t|x,w), then when we in-
tegrate over the unknowns x, a non-trivial density over t is defined, P(t|w) =
J dx P(t|x,w)P(x). Simple linear models of this form in the statistics litera-
ture are called ‘factor analysis’ models. In a ‘density network’ (MacKay 1995a)
P(t|x,w) is defined by a more general non-linear parameterized mapping, and
interesting priors on w may be used.

This paper reviews work on density networks where the observables are cat-
egorical (MacKay 1995a, MacKay 1996), and describes preliminary research on
the problem of real observables. In section 2 the model is defined. In section 3
an implementation of the model using a crude importance sampling method is
reviewed, and its application to modelling of protein sequences is described in
section 4. In section 5, a more sophisticated implementation using the hybrid
Monte Carlo method (Neal 1993) is described and applied to a toy problem with
real-valued observables.

2 The Density Network Model

The ‘latent inputs’ of the model form a vector x indexed by h = 1...H (‘h’ is
mnemonic for ‘hidden’). The dimensionality of this hidden space is H but the
effective dimensionality of the density in the output space may be smaller, as
some of the hidden dimensions may be effectively unused by the model. The
relationship between the latent inputs and the observables has the form of a
mapping from inputs to outputs y(x; w), parameterized by w, and a probability
of targets given outputs, P(t|y). The observed data are a set of target vectors
D = {t(}N_|. To complete the model we assign a prior P(x) to the latent
inputs (an independent prior for each vector x(™)) and a prior P(w) to the un-
known parameters. [In the applications that follow the priors over w and x(") are

Density Networks 3

assumed to be spherical Gaussians with widths controlled by hyperparameters
«a; other distributions could easily be implemented and compared, if desired.] In
summary, the probability of everything is:

P(D, {x"}, wiH) = [] [P ™, w, 1) P 3)] Pwlh). (2.1)

n
It will be convenient to define ‘error functions’ G(™ (x; w) as follows:
G (x™; w) = log P(t™ x™, w) (2.2)

The function G depends on the nature of the problem. If t consists of real
variables then G might be a sum-squared error between t and y; in a ‘softmax’
classifier where the observations t are categorical, In general we may have many
output groups of different types. The following derivation applies to all cases.

As an example, the following one-layer model may be useful to have in mind.
Each observation t = {t;}5_, (e.g., a single protein sequence) consists of S cat-
egorical attributes that are believed to be correlated (S will be the number of
columns in the protein alignment). Each attribute can take one of I discrete
values (e.g., I = 20), a probability over which is modelled with a softmax distri-
bution,

S
P(tlx,w) = [T {i xsw) }, (2.3)
where
5 (5 w) = exp(al”) (x:w)) /5, explal?) (x; w)) (24)

The parameters w form a matrix of (H + 1) x (S x I) weights from the H latent
inputs x (and one bias unit) to the S x I outputs:

H
al (x;w) = wd) + Z wz(,‘?mh (2.5)
h=1
The parameter wz(g) is called the bias of output unit (s,4). The data items t and
their associated latent inputs x are labeled by an index n = 1... N, not included
in the above equations, and the error function G(™) is

G (x™;w) = Zlog ytgn)(x(");w). (2.6)

2.1 Learning in a density network

Having written down the probability of everything (equation 2.1) we can now
make any desired inferences by turning the handle of probability theory. Let us
aim towards the inference of the parameters w given the data D, P(w|D,H). We
can obtain this quantity conveniently by distinguishing two levels of inference.

4 D.J.C. MacKay and M.N. Gibbs

Level 1: Given w and t(™, infer x(™). The posterior distribution of x(is

Pt x™ w, H)P(x™|H)

PEM™t™ w,) = P w) , (2.7)
where the normalizing constant is:
Pt™|w,H) = / dx™ ptMx™ w. 1) P(x™[H). (2.8)
Level 2: Given D = {t(™}, infer w.
Piw|D.34) — PO) P(wit) 29

P(D|H)

The data—dependent term here is a product of the normalizing constants of the
level 1 inferences:

P(D|w,H H Pt™|w, H (2.10)

The evaluation of the evidence P(t(")|w, H) for a particular n is a problem
similar to the evaluation of the evidence for a supervised neural network (MacKay
1992). There, the inputs x are given, and the parameters w are unknown; we
obtain the evidence by integrating over w. In the present problem, on the other
hand, the hidden vector x(") is unknown, and the parameters w are conditionally
fixed. For each n, we wish to integrate over x(™ to obtain the evidence.

2.2 The derivative of the evidence with respect to w

The derivative of the log of the evidence (equation 2.8) is:

6%1ogp(t<")|w,7{) / A exp(G)P) G(”)

(t(")|w
= / dfx™ p(x(™ |t n>,w,%)6ia<n>(x<n>;w). (2.11)
W

This gradient can thus be written as an expectation of the traditional ‘backprop-
agation’ gradient 8%6‘ (n) (x; w), averaging over the posterior distribution of x(")
found in equation (2.7).

2.3 Higher levels — priors on w

We can continue up the hierarchical model, putting a prior on w with hyper-
parameters {a} which are inferred by integrating over w. These priors are
important from a practical point of view to limit overfitting of the data by the
parameters w. The complexity of a model is controlled by, among other factors,
the number of latent variables that make a significant contribution to the gener-
ative model; with a hierarchical prior on w making use of hyperparameters {a},
we can automatically infer the appropriate complexity. These priors will also be
used to bias the solutions towards ones that are easier for humans to interpret.

Density Networks 5

3 A Simple Monte Carlo Implementation

The evidence and its derivatives with respect to w both involve integrals over the
hidden components x. For a hidden vector of sufficiently small dimensionality, a
simple Monte Carlo approach to the evaluation of these integrals can be effective.
We use importance sampling with the sampler being defined by the prior, P(x).

Let {x(W}E | be random samples from P(x). Then we can approximate the
log evidence by:

log P({t™}|w, H)

> log / d"x exp(G™(x; w))P(x) (3.1)

1

> log l% > exp(Gn(x";w)) | . (3.2)

Similarly the derivative can be approximated by:
p(G™ (x5 w)) g G (x(7); w)
> exp(Gn(x(); w)).

This simple Monte Carlo approach loses the advantage that we gained when we
rejected mixture models and turned to componential models: this implementa-
tion requires a number of samples R that is exponential in the dimension of the
hidden space H. More sophisticated methods using stochastic dynamics (Neal
1993) are described in section 5.

8% log P({t™}Y|w, H) ~ Z 2r X (3.3)

4 Modelling a Protein Family

A protein is a sequence of residues; each residue is one of the twenty amino acids.
A protein family is a set of proteins believed to have the same physical structure
but not necessarily having the same sequence of amino acids. In a multiple se-
quence alignment, residues of the individual sequences which occupy structurally
analogous positions are aligned into columns. Columns can often be character-
ized by a predominance of particular amino acids. Lists of marginal frequencies
over amino acids in different structural contexts are given in (Nakai, Kidera and
Kanehisa 1988). Such frequencies correspond to a first order description of a
protein family in which correlations between residues are not modelled.

The development of models for protein families is useful for two reasons. The
first is that a good model might be used to identify new members of an exist-
ing family, and discover new families, in data produced by genome sequencing
projects. The second reason is that a sufficiently complex model might be able
to give new insight into the properties of the protein family; for example, prop-
erties of the proteins’ tertiary structure might be elucidated by a model capable
of discovering suspicious inter—residue correlations.

The principal probabilistic model that has been applied to protein families is
a hidden Markov model (HMM) (Krogh, Brown, Mian, Sjolander and Haussler
1994). Assuming that each state of the HMM corresponds to one column of a

6 D.J.C. MacKay and M.N. Gibbs

multiple sequence alignment, this model is not inherently capable of discovering
long—range correlations, as Markov models, by definition, produce no correlations
between the observables, given a hidden state sequence.

The next—door neighbour of proteins, RNA, has been modelled with a ‘covari-
ance model’ capable of capturing correlations between base—pairs in anti—parallel
RNA strands (Eddy and Durbin 1994). Density networks offer a model capable
of discovering general correlations between multiple arbitrary columns in a pro-
tein family. Steeg (1997) has developed an efficient statistical test for discovering
correlated groups of residues. The density network approach is complementary
to Steeg’s in that (1) in the density network, a residue may be influenced by more
than one latent variable; whereas Steeg’s test is specialized for the case where
the correlated groups are non—overlapping; (2) the density networks developed
here define full probabilistic models rather than statistical tests.

Here we model the protein families using a density network containing one
softmax group for each column (see equations 2.3-2.6). The network has only one
layer of weights connecting the latent variables x directly to the softmax groups.
We have optimized w by evaluating the evidence and its gradient and feeding
them into a conjugate gradient routine. The random points {x(")} are kept fixed,
so that the objective function and its gradient are deterministic functions during
the optimization. This also has the advantage of allowing one to get away with a
smaller number of samples R than might be thought necessary, as the parameters
w can adapt to make the best use of the empirical distribution over x.

4.1 Regularization schemes

A human prejudice towards comprehensible solutions gives an additional moti-
vation for regularizing the model, beyond the usual reasons for having priors.
Here we encourage the model to be comprehensible in two ways:

(1) There is a redundancy in the model regarding where it gets its randomness
from. Assume that a particular output is actually random and uncorrelated
with other outputs. This could be modelled in two ways: its weights from
the latent inputs could be set to zero, and the biases could be set to the log
probabilities; or alternatively the biases could be fixed to arbitrary values,
with appropriate connections to unused latent inputs being used to create
the required probabilities, on marginalization over the latent variables. In
predictive terms, these two models would be identical, but we prefer the
first solution, finding it more intelligible. To encourage such solutions we
use a prior which only very weakly regularizes the biases, so that they are
‘cheap’ relative to the other parameters.

(2) If the distribution P(x) is rotationally invariant, then the predictive distri-
bution is invariant under corresponding transformations of the parameters
w. If a solution can be expressed in terms of parameter vectors aligned
with some of the axes (i.e. so that some parameters are zero), then we
would prefer that representation. Here we create a non—spherical prior on
the parameters by using multiple undetermined regularization constants

Density Networks 7

Table 1 Toy data for a protein family

EEAB EECB EEBC EECC EEAA EEBA EEBB EECD
EEDC EEDD AACD DDDC CBDD CCAB BDCB ABBC
CBCC EDAA ABBA BCBB DBAB AECB EBBC BDCC
BCAA DABA BCBB

{a.}, each one associated with a class of weights (c.f. the automatic rele-
vance determination model (Neal 1996, MacKay 1994, MacKay 1995b)). A
weight class consists of all the weights from one latent input to one softmax
group, so that for a protein with S columns modelled using H latent vari-
ables, we introduced S H regularization constants, each specifying whether
a particular latent variable has an influence on a particular column. Given
a., the prior on the parameters in class ¢ is Gaussian with variance 1/a.
This prior favours solutions in which one latent input has non—zero con-
nections to all the units in some softmax groups (corresponding to small
a.), and negligible connections to other softmax groups (large a.). The re-
sulting solutions can easily be interpreted in terms of correlations between
columns.

4.2 Method for optimization of hyperparameters

For given values of {a.}, the parameters w were optimized to maximize the
posterior probability. The hyperparameters {a.} were adapted during the opti-
mization of the parameters w using a cheap and cheerful method motivated by
Gaussian approximations (MacKay 1992), thus:

ke
=3
ZiEc wj
Here k. is the number of parameters in class ¢ and f is a ‘fudge factor’ incorpo-
rated to imitate the effect of integrating over w (set to a value between 0.1 and
1.0).

This algorithm could be converted to a correct ‘stochastic dynamics’ Monte

Carlo method (Neal 1993) by adding an appropriate amount of noise to gradient
descent on w and setting f = 1.

4.3 Toy data

A toy data set was created imitating a protein family with four columns each
containing one of five amino acids (A-E). The 27 data (table 1) were constructed
to exhibit two correlations between the columns: the first and second columns
have a tendency both to be amino acid E together. The third and fourth columns
are correlated such that if one is amino acid A, then the other is likely to be A
or B; if one is amino acid B, then the other is likely to be A, B or C; if one is C,
then the other is likely to be B, C or D; and if one is D then the other is likely to
be C or D; so that a single underlying dimension runs through the amino acids
AB,C,D (E doesn’t occur in these two columns). The model is given no prior

a. = f (4.1)

8 D.J.C. MacKay and M.N. Gibbs

(i)

FiG. 1. Parameters and Hyperparameters inferred for the toy protein family (a)
without regularization; (b) with adaptive regularizers. (a) Hinton diagram
showing parameters w of model optimized without adaptive regularizers.
Positive parameters are shown by black squares, negative by white. Mag-
nitude of parameter is proportional to square’s area. This diagram shows, in
the five grey rectangles, the projective fields from the bias and the four latent
variables to the outputs. In each grey rectangle the influences of one latent
variable on the twenty outputs are arranged in a 5x4 grid: in each column
the 5 output units correspond to the 5 amino acids. It is hard to interpret
these optimized parameters. (b) The hyperparameters (i) and parameters
(ii) of a hierarchical model with adaptive regularizers. The results are more
intelligible and show a model that has discovered the two dimension that
underlie the data. Hyperparameters: Each hyperparameter controls all the
influences of one latent variable on one column. Square size denotes the value
of 62 = 1/a on a log scale from 0.001 to 1.0. The model has discovered that
columns 1 and 2 are correlated with each other but not with columns 3 and
4, and vice versa. Parameters: Note the sparsity of the connections, making
clear the two distinct underlying dimensions of this protein family.

(i)

knowledge of the ‘spatial relationship’ of the columns, or of the ordering of the
amino acids. A model that can identify the two correlations in the data is what
we are hoping for.

Both regularized and unregularized density networks having four latent in-
puts were adapted to this data. Unregularized density networks give solutions
that successfully predict the two correlations, but the parameters of those mod-
els are hard to interpret (fig. 1(a)). There is also evidence of overfitting of the
data leading to overconfident predictions by the model. The regularized models,

Density Networks 9

T T T T
T o l
*
2+ %D ek 4
i -
|- * -
1 * &D GLB ©
HBA +
o HBB ©
0 *&g HBE
ﬁ‘% + HBG x
€ +f+ o LGB =
1L : : + MYG * |
R ++ +
o, iﬁ; +
2 F e T p o
+ s +
i+ +7%
£ e,
3 Il Il Il Il
-3 -2 -1 0 1 2 3

F1G. 2. Two—dimensional representation of globins. From (MacKay 1995a).

in which all the parameters connecting one input to one softmax group are put
in a regularization class with an unknown hyperparameter a., give interpretable
solutions that clearly identify the two correlated groups of columns. Figure 1(b)
shows the hyperparameters and parameters inferred in a typical solution using a
regularized density network. Notice that two of the latent inputs are unused in
this solution. Of the other two inputs, one has an influence on columns 1 and 2
only, and the other has an influence on columns 3 and 4 only. Thus this model
has successfully revealed the underlying ‘structure’ of the proteins in this family.
The parameters are straightforward to interpret also; the first latent variable,
when negative, makes E more probable in columns 1 and 2, and makes all other
amino acids less probable, with the possible exceptions AExx and EBxx having
been memorized; the second latent variable’s parameters clearly show the one
dimensional ordering of the amino acids A, B, C, D.

4.4 Results on real data: globins

In MacKay (1995a) a rather ambitious attempt was made to model the joint
density of the amino acids in an entire aligned protein sequence using a low—
dimensional latent variable space.

Data describing 400 proteins in the globin family was received in aligned form
courtesy of Sean Eddy (modelling of unaligned data is possible in principle, but
harder), with S = 208 columns each containing one of I = 21 symbols (twenty
amino acids and ‘deletion’), or else a ‘no measurement’ symbol. The density
network maps from H latent inputs to ST outputs, grouped in S softmax groups
of I units each. With H = 20 latent dimensions this model has about 80,000
parameters. The special case of H = 0 latent inputs creates a model with
independent probabilities over amino acids at each column, which is roughly
equivalent to the hidden Markov model.

Results for the case of H = 2 latent variables are shown in fig. 2. The

10 D.J.C. MacKay and M.N. Gibbs

Fig. 3. Parameters w of an optimized density network modelling aligned an-
tiparallel beta strands. From (MacKay 1996). In each grey rectangle the
twelve columns represent the twelve residues surrounding a beta hydrogen
bond, the first six on one strand and the second six on the other, with the
hydrogen bond lying between residues 3, 4, 9 and 10. The twenty rows
represent the twenty amino acids, in alphabetical order (A,C,D,...). Each
rectangle shows the influences of one latent variable on the 12 x 20 probabil-
ities. The top left rectangle shows the biases of all the output units. There
is an additional 21st row in this rectangle for the biases of the output units
corresponding to ‘no amino acid’. The latent variables were defined to have
no influence on these outputs to inhibit the wasting of latent variables on the
modelling of dull correlations. The other six rectangles contain the influences
of the 6 latent variables on the output units, of which the second and fifth
are discussed in the text.

choice of two dimensions makes the globins easy to visualize. The posterior
mean of the latent components, estimated by importance sampling, is displayed
for each globin. The globin sub—families (GLB, HBA, HBB, etc.) are identified
by the point style. The sub—families are seen to be cleanly separated in this
representation.

4.5 Results on real data: beta sheets

Beta sheets are structures in which two parts of the protein engage in a partic-
ular hydrogen-bonding interaction. It would greatly help in the solution of the
protein folding problem if we could distinguish correct from incorrect alignments
of beta strands.

N = 1000 examples were taken from aligned antiparallel beta strand data
provided by Tim Hubbard. Density networks with H = 6 latent inputs were
used to model the joint distribution of the twelve residues surrounding a beta
hydrogen bond. Our prior expectation is that if there is any correlation among
these residues, it is likely to reflect the spatial arrangement of the residues, with
nearby residues being correlated. But this prior expectation was not included in
the model. The hope was that meaningful physical properties such as this would
be learned from the data.

The parameters of a typical optimized density network are shown in fig. 3.
The parameter vectors were compared, column by column, with a large number
of published amino acid indices (Nakai et al. 1988) to see if they corresponded

Density Networks 11

to established physical properties of amino acids. Each index was normalized
by subtracting the mean from each vector and scaling it to unit length. The
similarity of a parameter vector to an index was then measured by the magnitude
of their inner product.

Two distinctive patterns reliably emerged in most adapted models, both hav-
ing a meaningful physical interpretation. First, an alternating pattern can be
seen in the influences of the second latent variable (third rectangle from the
left). The influences on columns 2, 4, 9 and 11 are similar to each other, and
opposite in sign to the influences on columns 3, 5, 10 and 12. This dichotomy
between the residues is physically meaningful: residues 2, 4, 9 and 11 are on the
opposite side of the beta sheet plane from residues 3, 5, 10 and 12; when these
influence vectors were compared with Nakai et. al.’s (1988) indices, they showed
the greatest similarity to indices 57, 17, 7 and 42, which respectively describe the
amino acids’ polarity, the proportion of residues 100% buried, the transfer free
energy to surface, and the consensus normalized hydrophobicity scale. This la-
tent variable has clearly discovered the inside—outside characteristics of the beta
sheet structure: either one face of sheet is exposed to the solvent (high polarity)
or the other face, but not both.

Second, a different pattern is apparent in the second rectangle from the right.
Here the influences on residues 4, 5, 6, 7, 8 are similar and opposite to the
influences on 11, 12, 1, 2. For five of these residues the influence vector shows
greatest similarity with index number 21, the normalized frequency of beta—
turn. What this latent variable has discovered, therefore, is that a beta turn
may happen at one end or the other of two anti—parallel beta strands, but not
both.

Both of these patterns have the character of an ‘exclusive—or’ problem (Rumel-
hart and McClelland 1986). One might imagine that an alternative way to model
aligned beta sheets would be to train a discriminative model such as a neural
network binary classifier to distinguish ‘aligned beta sheet’ from ‘not aligned’.
However, such a model would have difficulty learning these exclusive—or patterns.
Exclusive—or can be learnt by a neural network with one hidden layer and two
layers of weights, but it is not a natural function readily produced by such a
network. In contrast these patterns are easily captured by the density networks
presented here, which have only one layer of weights.

It is interesting to note that the two effects discovered above involve com-
peting correlations between large numbers of residues. The inside—outside latent
variable produces a positive correlation between columns 4 and 11, for exam-
ple, while the beta turn latent variable produces a negative correlation between
those two columns. These results, although they do not constitute new discov-
eries, suggest that this technique shows considerable promise.

4.6 Future work

More complex models under development will include additional layers of pro-
cessing between the latent variables and the observables. The present model has

12 D.J.C. MacKay and M.N. Gibbs

no way of knowing that the 21 categories within a softmax group have the same
meaning for all softmax groups. Imagine, for example, that two amino acids are
functionally indistinguishable, and always occur with equal probability. With
the present model, this relationship would have to be learned S times over, once
for each softmax group. But if some of the parameters of a second layer were
communal to all columns of the protein, the model would be able to general-
ize amino acid equivalences from one column to another. This would reduce
overfitting and improve predictive performance.

It is hoped that a density network adapted to beta sheet data will eventually
be useful for discriminating correct from incorrect alignments of beta strands.
The present work is not of sufficient numerical accuracy to achieve this.

5 Real Density Networks and Stochastic Dynamics

A major weakness of the importance sampling method described in the preced-
ing sections is that it does not scale well with an increasing number of latent
variables.

In this section we describe a more complex Monte Carlo implementation with
favourable scaling properties. We sample from the joint posterior probability of
the latent variables and the parameters,

P({x™}, wiD,H) o [] [P x™, w, M) P)| P(wlH), (5.1)

by a Gibbs/Metropolis method in which alternately the latent variables {x(™)}
are sampled using a Metropolis method that converges to P({x(™}|{t(™}, w);
then the parameters are sampled from their distribution given the data and the
latent variables, P(w|{t(™}, {x(™}). The sampling is done using the hybrid
Monte Carlo method (Neal 1993) which is reviewed below. The step in which
the parameters are sampled is identical to ordinary Bayesian stochastic training
of a neural network with known inputs.

One could also implement a simultaneous stochastic sampler which updated
the parameters and the latent variables at the same time as each other. Such
an approach, in which all N latent variable vectors were simultaneously altered,
would have the advantage of reducing random walk behaviour caused by correla-
tions in the joint posterior distribution, but it would have the disadvantage that
in order to maintain a reasonable acceptance probability for these more complex
proposals, one would have to reduce the step size of the dynamical simulations.

5.1 A brief review of the hybrid Monte Carlo method

Radford Neal’s ‘Hybrid Monte Carlo’ method for neural networks is a sophisti-
cated Metropolis method, applicable to continuous state spaces, which makes use
of gradient information to reduce random walk behaviour. It will be described
here in the context of the general problem of sampling a continuous vector x

Density Networks 13

from a probability P(x) which can be written in the form

—E(x)
Px) =S ~ (5.2)

where not only E(x), but also its gradient with respect to x can be readily
evaluated. It seems wasteful to use a simple random—walk Metropolis method
when this gradient is available — the gradient indicates which direction one
should go in to find states with higher probability!

In the hybrid Monte Carlo method, the state space x is augmented by mo-
mentum variables p, and there is an alternation of two types of proposal. The
first proposal density randomizes the momentum variable, leaving the state x
unchanged. The second proposal density changes both x and p using reversible
Hamiltonian dynamics as defined by the Hamiltonian

H(x,p) = E(x) + K(p), (5.3)

where K (p) is a ‘kinetic energy’ such as K(p) = p'p/2. Under these dynamics,
the momentum variable determines where the state x goes, and the gradient of
E(x) determines how the momentum p changes. The net effect is that during
each of the dynamical proposals, the state of the system moves a distance that
goes linearly with the computer time, rather than as the square root.

If the simulation of the Hamiltonian dynamics is numerically perfect then
the proposals are accepted every time; if the simulation is imperfect, because
of finite step sizes for example, then some of the dynamical proposals will be
rejected. The rejection rule makes use of the change in H(x,p), which is zero if
the simulation is perfect.

Asymptotically, we obtain samples (x(Y), p(*)) from the joint density

Prr(x,p) = i exp[—H (x,p)] = i expl-Ex)]expl-K(p)l. (5.4)

This density is separable, so it is clear that the marginal distribution of x is
the desired distribution exp[—E(x)]/Z. So, simply discarding the momentum
variables, we obtain a sequence of samples {x(t)} which asymptotically come
from P(x).

The source code in fig. 4 describes a hybrid Monte Carlo method which uses
the ‘leapfrog’ algorithm to simulate the dynamics on the function findE(x),
whose gradient is found by the function gradE(x).

5.2 Demonstration on a toy real-valued data set

We created a simple two—dimensional data set with a non-linear dependence on
a single underlying variable, shown in fig. 5. The points are in fact noisy samples
from a semicircle.

We modelled this data with a density network with two latent inputs. The pa-
rameters were put in just three weight classes (hidden unit biases, input weights

14 D.J.C. MacKay and M.N. Gibbs

g = gradE (x) ; # set gradient using initial x
E = findE (x) ; # set objective function too
for 1 = 1:L # loop L times
p = randn (size(x)) ; # initial momentum is Normal(0,1)
H=p> xp/2+E; # evaluate H(x,p)
Xnew = X
gnew = g ;
for tau = 1:Tau # make Tau ‘leapfrog’ steps
P = p - epsilon * gnew / 2 ; # make half-step in p
xnew = xnew + epsilon * p ; # make step in x
gnew = gradE (xnew) ; # find new gradient
P = p - epsilon * gnew / 2 ; # make half-step in p
endfor
Enew = findE (xnew) ; # find new objective function
Hnew = p’ * p / 2 + Enew ; # evaluate new value of H
dH = Hnew - H ; # Decide whether to accept
if (dH < 0) accept = 1 ;
elseif (rand() < exp(-dH)) accept =1 ;
else accept = 0 ;
endif
if (accept)
g = gnew ; X = Xnew ; E = Enew ;
endif
endfor

Fi1G. 4. Octave source code for the hybrid Monte Carlo method.

Density Networks 15

3 | | | | |
2 - —
1F o M
O - P -
o
-1k ﬁlﬁ] =
(a) -1 0 1
2+ -
3 | | | | |

m =¥ =2 -1 0o 1 2 3

F1a. 5. Density network with real-valued outputs. (a) Data alone — the squares
show the twenty data points. (b) State of the network after ten iterations.
The network had two latent inputs, 16 hidden units and two outputs. The
dots show the output of the network as its latent inputs vary in the range +
two standard deviations around their mean.

and output weights). The output noise level was fixed to o, = 0.05, and the
latent variables, parameters and hyperparameters were updated iteratively as
follows. First, the latent variables associated with each data point were updated
using two hundred proposals generated by the hybrid Monte Carlo method. Each
proposal used 30 leapfrog steps. Second, conditional on the latent variables,
the weights were updated using two hundred proposals generated by the hybrid
Monte Carlo method. Third, the hyperparameters (the mean and variance of the
latent variables, and the variance of the three weight classes) were updated; this
step might ideally have used Gibbs sampling, but here, the hyperparameters
were reset to their maximum likelihood values conditional on the parameters.
Figure 5 shows the situation after ten iterations. For typical values of the latent
inputs, the output of the network is indeed in the semicircular region where the
data are located.

6 Discussion

Density networks have shown some success as non-linear latent variable models.
It is particularly encouraging that in applications to beta sheet protein sequences,

16 D.J.C. MacKay and M.N. Gibbs

a natural, separable description of a complex distribution was found, with one
latent variable capturing a hydrophobic/hydrophilic effect, and another discov-
ering a beta-turn/no-beta—turn effect. This separation would not have been
found if we had not used a hierarchical prior with multiple hyperparameters.

The biggest difficulty with density networks is that they require computer—
intensive Monte Carlo methods. Importance sampling methods scale very badly
with increasing dimensionality; stochastic dynamics methods scale better, but
still worse than linearly with the number of variables.

A new latent variable model which can be implemented by local Monte Carlo
methods with better scaling properties has recently been introduced by Hinton
and Ghahramani (1997); this exciting model is able to discover both categorical
and real latent variables. It has been applied to problems with high—dimensional
real observables, but not yet to problems with categorical observables.

Acknowledgements

We thank Radford Neal, Geoff Hinton, Sean Eddy, Richard Durbin, Tim Hub-
bard and Graeme Mitchison for invaluable discussions. DJCM gratefully ac-
knowledges the support of this work by the Royal Society Smithson Research
Fellowship.

Bibliography

A. Krogh, M. Brown, I. S. Mian, K. Sjolander and D. Haussler (1994). Hidden
Markov models in computational biology: Applications to protein modeling,
Journal of Molecular Biology 235: 1501-1531.

B. S. Everitt (1984). An Introduction to Latent Variable Models, Chapman and
Hall, London.

D. E. Rumelhart and J. E. McClelland (1986). Parallel Distributed Processing,
MIT Press, Cambridge Mass.

D. J. C. MacKay (1992). A practical Bayesian framework for backpropagation
networks, Neural Computation 4(3): 448-472.

D. J. C. MacKay (1994). Bayesian non-linear modelling for the prediction com-
petition, ASHRAFE Transactions, V.100, Pt.2, ASHRAE, Atlanta Georgia,
pp. 1053-1062.

D. J. C. MacKay (1995a). Bayesian neural networks and density networks, Nu-
clear Instruments and Methods in Physics Research, Section A 354(1): 73—
80.

D. J. C. MacKay (1995b). Probable networks and plausible predictions — a
review of practical Bayesian methods for supervised neural networks, Net-
work: Computation in Neural Systems 6: 469-505.

D. J. C. MacKay (1996). Density networks and their application to protein
modelling, in J. Skilling and S. Sibisi (eds), Mazimum Entropy and Bayesian
Methods, Cambridge 1994, Kluwer, Dordrecht, pp. 259—-268.

. Steeg (1997). Automated Motif Discovery in Protein Structure Prediction,

=

Density Networks 17

PhD thesis, Department of Computer Science, University of Toronto.

G. E. Hinton and R. S. Zemel (1994). Autoencoders, minimum description length
and Helmholtz free energy, in J. D. Cowan, G. Tesauro and J. Alspector
(eds), Advances in Neural Information Processing Systems 6, Morgan Kauf-
mann, San Mateo, California.

G. E. Hinton and Z. Ghahramani (1997). Generative models for discovering
sparse distributed representations, submitted to Proc. Roy. Soc.

K. Nakai, A. Kidera and M. Kanehisa (1988). Cluster analysis of amino acid
indices for prediction of protein structure and function, Prot. Eng. 2: 93—
100.

R. M. Neal (1993). Bayesian learning via stochastic dynamics, in C. L. Giles, S. J.
Hanson and J. D. Cowan (eds), Advances in Neural Information Processing
Systems 5, Morgan Kaufmann, San Mateo, California, pp. 475-482.

R. M. Neal (1996). Bayesian Learning for Neural Networks, number 118 in
Lecture Notes in Statistics, Springer, New York.

S. P. Luttrell (1994). The partitioned mixture distribution: an adaptive Bayesian
network for low-level image processing, Proc. IEE Vision, Image and Signal
Processing 141(4): 251-260.

S. R. Eddy and R. Durbin (1994). RNA sequence analysis using covariance
models, Nucleic Acids Research 22: 2079-2088.

V. Tresp, S. Ahmad and R. Neuneier (1994). Training neural networks with defi-
cient data, in J. D. Cowan, G. Tesauro and J. Alspector (eds), Advances in
Neural Information Processing Systems 6, Morgan Kaufmann, San Mateo,
California.

