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The central problem of information theory:
To achieve reliable communication over an unreliable channel.

Unreliable channels include satellite links, telephone lines, disc drives.

An idealized noisy channel:
Binary symmetric channel, noise level f = 7.5%

7.5% of bits are flipped

[Source image Copyright(©1997 United Feature Syndicate, Inc., used with permission.]



How to achieve reliable communication?

We would like to achieve virtually error-free communication. e.g., an error
probability of ~ 10~ per bit.

The ‘system’ solution for achieving reliable communication
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The encoding system introduces redundancy in some systematic way into the trans-
mitted vector t. The decoding system makes use of this known redundancy to deduce,
given the received vector r, what the noise introduced by the channel and the original

source vector probably were.



A simple encoder: add redundancy by repetition

S ENCODER t CHANNEL r DECODER S
f="175%
REDUNDAN REDUNDAN T IRE BN | REDUNDAR
" GLASS. ] " GLASS. s ST T
h-:'a:'f =T > g N it
W@Eﬁﬂﬂm
1 %}é_‘ﬁs’* The decoder takes
B .'f;; g the majority vote of
g o | the three signals.

Good news: only 1.6% of decoded bits are in error

Bad news: rate of communication reduced to 1/3

We can further reduce the error
probability by repeating more
times.  With 17 repetitions
(‘R17’), the error probability is
reduced to 1075 But the rate
has fallen to 1/17.
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A more complex encoder: The (7,4) Hamming code

Every four source bits are protected with three parity bits.

S t S t S t S t
0000 | 0000 000 0100|0100 110 1000|1000 101 1100|1100 O11
0001 | 0001 011 0101|0101 101 1001|1001 110 1101|1101 000
0010|0010 111 0110|0110 001 1010|1010 010 1110|1110 100
0011|0011 100 0111|0111 010 1011|1011 001 1111|1111 111
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The decoder picks
the § with maximum
likelihood.

parity bits

4% of decoded bits are in error

rate of communication is 4/7




In theory, what could the best codes achieve?

We would like small error probability and large rate.

The repetition codes, the Ham-
ming (7,4) code, and related
textbook codes (4) perform as
shown here.

Probability of decoder error
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One might guess that the error probability can only be made very small

by making the rate very small.

However, in 1948 Shannon
proved the remarkable result
that, for any given channel,
the boundary between achiev-
able and nonachievable points
meets the R axis at a non-zero
value R = C.

Probability of decoder error

The practical challenge is to create
to what Shannon proved is possible.
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error-correcting codes that get close



Low density parity check codes

Our codes are defined in terms of a very sparse matriz, H, e.g.,

which 1s known to the encoder and decoder.

The encoding method and the decoding problem

We use encodings, t which satisfy Ht = 0 (mod 2). These consist of a source
message s followed by appropriately chosen parity checks. The received
vector is r = t +n (mod 2), where n is the noise. The receiver knows H and
can compute z = Hr = Ht + Hn = Hn. The decoding problem is then to
find the sparsest vector x satisfying the equation

Hx =z (mod?2),

this x being the best guess for n. If we can find n, we can find t, and from
that the original message.

H is very sparse, and the x we are trying to find is sparse, so this problem
doesn’t sound intractable.

History

These codes were first studied in 1962 by Gallager, but were then generally
forgotten by the coding theory community.



Theoretical result:

Low density parity check codes, in spite of their simple construction, are
very good codes, given an optimal decoder.

Practical results:

We have developed two decoding strategies.

1: Mean field methods — inspired by statistical physics and neural net-
works

2: Iterative probabilistic decoding —from artificial intelligence. This
is the better of the two methods.



Iterative probabilistic decoding

We attempt to solve the decoding problem
Hx =z (mod2)

by a message-passing algorithm called probability propagation. The com-
ponents of x and z can be thought of as nodes in a graph whose edges are
defined by the 1s in H.

A = 9
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? ..' ‘ 5 White nodes represent bits, z;;
% ‘ black nodes represent checks, z,,;
e o each edge corresponds to a 1 in H.

On each iteration, a probability ratio is propagated along each edge in the
graph, and each node x; updates its probability that it should actually be
in state 1.

If the graph were cycle-free then this probability propagation algorithm
would generate the correct answer.

It is not cycle-free, but the algorithm still performs extremely well.



THE ENCODER

TRANSMITTED:
We demonstrate a large code that en- REDUNDAN

codes K = 10000 source bits into
N = 20000 transmitted bits.

Each parity bit depends on about
5000 source bits.

The encoder is derived from a very :
sparse 1000020000 matrix H with parity bits { &
three 1s per column.




Iterative decoding

After the transmission is sent over a channel with noise level f = 7.5%:
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This final decoding is error free.

In the case of an unusually noisy transmission, the decoding algorithm
fails to find a valid decoding. For this code and a channel with f = 7.5%,
such failures happen about once in every 100,000 transmissions.



These codes outperform textbook codes by a substantial margin.

Results for binary symmetric channel with f = 7.5%
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Shannon limit is off the left side of the figure.

Solid lines: low density parity check codes.
Dotted lines (right): textbook codes as used in satellites and the Voyager spacecraft.

Dotted lines (left): state of the art codes: ‘Turbo’ codes and ‘Galileo’ code (15,1/4).



Improving Gallager Codes
— Clump bits and checks together

Also known as...

Generalize to other finite fields GF(q)

Our original work on low density parity check codes used ordinary binary
arithmetic, known as ‘GF'(2)’. The addition and multiplication tables for
GF(2) are:

+10 1 10 1
0|0 1 010 0
1110 1101

We can also define error-correcting codes using the addition and multipli-
cation tables of other finite fields, for example GF'(4):

+/0 1 A B 01 AB
0/0 1 AB 0/0 0 0 O
111 0 B A 110 1 A B
AlA B 0 1 A0 A B 1
BB A1 O B0 B 1A

We define low density parity check matrices using elements of GF(4), and
translate our binary messages into GF'(4) using, for example:

binary < GF(4)

00 < 0
01 <« 1
10 <& A
11 +« B



Results

The resulting codes over GF'(4), GF(8), GF(16), ..., when decoded with
the iterative probabilistic decoder, perform nearly one decibel better.

The computational cost for working in GF(q) scales as ¢°.

Results for Gaussian channel
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Solid lines: low density parity check codes.
Dotted lines: JPL’s latest ‘Turbo’ codes.



Improving Gallager Codes 11

— Make the graph irreqular

Luby et al showed that irregular constructions work better. The best
graphs have irregular node connectivity and regular check connectivity.

Combining these two ideas (irregular graphs, and grouping nodes to-
gether), Matthew Davey produced the best known code of rate 0.25.
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Conclusion

The state of the art solution to the communication problem is:

Combine a simple, pseudo-random code with
an approximate probability-based decoder.
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