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Abstract

Ensemble learning by variational free energy minimization is a framework
for statistical inference in which an ensemble of parameter vectors is opti-
mized rather than a single parameter vector. The ensemble approximates
the posterior probability distribution of the parameters.

In this paper | give a review of ensemble learning using a simple
example.

1 Ensemble Learning by Free Energy
Minimization

A new tool has recently been introduced into the field of neural networks. In
traditional approaches to model fitting, a single parameter vector w is opti-
mized by, say, maximum likelihood or penalized maximum likelihood; in the
Bayesian interpretation, these optimized parameters are viewed as defining the
mode of a posterior probability distribution P(w|D,#) (given data D and
model assumptions ).

The new concept introduced by Hinton and van Camp (1993) is to work in
terms of an approximating ensemble Q(w; ), that is, a probability distribution
over the parameters, and optimize the ensemble (by varying its own parame-
ters @) so that it approximates the posterior distribution of the parameters
P(w|D,H) well. The objective function chosen to measure the quality of the
approximation is a variational free energy,!

P(D|w,H)P(w|H)
Q(w;0)

The numerator P(D|w,H)P(w|H) is, within a multiplicative constant, equal
to the posterior probability P(w|D, ) = P(D|w,H)P(w|#H)/P(D|H). So the
free energy F'(f) can be viewed as the sum of —log P(D|#) and the Kullback-
Leibler divergence between Q(w;60) and P(w|D,H). F(f) is bounded below
by —log P(D|#H) and only attains this value for Q(w;0) = P(w|D,H). For

F(0) = —/dkw Q(w;0)log (1)

1Variational free energy minimization is a well-established tool for the approximation of
probability distributions in statistical physics (Feynman 1972). The free energy can also be
described in terms of description lengths, as in Hinton and van Camp (1993).



certain models and certain approximating distributions, this free energy, and
its derivatives with respect to the ensemble’s parameters, can be evaluated.

Hinton and van Camp (1993) considered a regression network with one
non-linear hidden layer and showed that a separable Gaussian approximating
distribution Q(w;#) can be optimized with a deterministic algorithm.

Hinton and Zemel (1994) have applied the same approach to the optimiza-
tion of an autoencoder. The hidden-to-output part of an autoencoder is viewed
as defining a generative model employing latent variables that live in the hidden
layer of the model. The optimization of such a generative model is challenging,
requiring, for every given data example, an implicit or explicit computation
of the posterior probability distribution P of the latent variables. Hinton and
Zemel (1994) view the input-to-hidden ‘recognition’ part of the autoencoder
as defining an approximating distribution @ for this distribution P. A single
objective function F' can then be defined for simultaneous optimization of the
generative model and the recognition model. The Helmholtz machine (Dayan
et al. 1995) is a further generalization of these ideas.

In a broader statistical context, Neal and Hinton (1993) have shown that
it is possible to view the Expectation-Maximization (EM) algorithm in terms
of a free energy minimization. The Bayesian (ML II) approach to the opti-
mization of hyperparameters in a hierarchical model (reviewed in (MacKay
1992)) can also be derived as a free energy minimization (MacKay 1995a). The
deterministic Boltzmann machine can be derived as a free energy approxima-
tion to the Boltzmann machine (Radford Neal, personal communication). And
MacKay (1995b) has obtained an algorithm for decoding certain binary codes
by variational free energy minimization.

2 Inferring a Gaussian distribution

For background reading on Bayesian methods, the textbook of Box and Tiao
(1973) is recommended.

The popular one-dimensional Gaussian distribution is parameterized by a
mean p and a standard deviation o:

P(x|p,0) = ﬁ exp <—%) = Normal(z; u, 0?). (2)

Let us examine the inference of y and o given data points z,, n = 1...N,
assumed to be drawn independently from this distribution. When inferring
these parameters, we must specify their prior distribution. This gives us the
opportunity to include specific knowledge that we have about y and o (from
independent experiments, or on theoretical grounds, for example). If we have no
such knowledge, then we can construct an appropriate prior which embodies
our supposed ignorance. In either case, it may be appropriate to consider
conjugate priors; these are priors which have a functional form which integrates
naturally with data measurements, making the inferences have an analytically
convenient form. The conjugate prior for a mean y is a Gaussian, P(u|po, ou) =
Normal(y; po, o). In the limit gg = 0,0, — 0o, we obtain the noninformative
prior for a location parameter, the flat prior. This is ‘noninformative’ because
it is invariant under the reparameterization ' = p+c¢. The prior P(p) = const.
is also an improper prior, that is, it is not normalizable.



The conjugate prior for a standard deviation ¢ is a gamma distribution,
conveniently defined in terms of the inverse variance 8 = 1/0?%:

1 gt 8
P8) = T(Bsbs.c5) = s w2 ) 0 < A< 0 ®)
B

This is a simple peaked distribution with mean bgcg and variance b%cﬁ. In
the limit bgcg = 1,cs5 — 0, we obtain the noninformative prior for a scale
parameter, the 1/¢ prior. This is ‘noninformative’ because it is invariant under
the reparameterization o/ = co. The 1/o prior is less strange looking if we
examine the resulting density over logo, or log 3, which is flat. This is the
prior that expresses ignorance about o by saying ‘well, it could be 10, or it
could be 1, or it could be 0.1, ...’ Scale variables such as o are usually best
represented in terms of their logarithm. Again, this noninformative prior is
improper.
In the following examples, I will use the improper priors for p and o.

2.1 Maximum likelihood and marginalization: o, and

O N4
The task of inferring the mean and standard deviation of a Gaussian distribu-
tion from N samples is a familiar one, though maybe not everyone understands
the difference between the o, and oy, buttons on their calculator. Let us

recap the formulae, then derive them.
Given data D = {z,}Y_;, an ‘estimator’ of p is

=3, 2a/N, (4)

and two estimators of o are:

ZnN:1(33n -

on =

There are two principal paradigms for statistics: sampling theory and Bayesian
inference. In sampling theory (also known as ‘frequentist’ or orthodox statis-
tics), one invents ‘estimators’ of quantities of interest and then chooses be-
tween those estimators using some criterion measuring their sampling proper-
ties; there is no clear principle for deciding which criterion to use to measure
the performance of an estimator; nor, for most criteria, is there any systematic
procedure for the construction of optimal estimators. In Bayesian inference,
in contrast, once we have made explicit all our modelling assumptions, our
inferences are mechanistic. Whatever question we wish to pose, the rules of
probability theory give a unique answer which consistently takes into account
all the given information. Human-designed estimators and confidence intervals
have no role in Bayesian inference; human input only enters into the impor-
tant tasks of designing the hypothesis space, and implementing inference in
that space. The answers to our questions are probability distributions over the
quantities of interest. We often find that the estimators of sampling theory
emerge automatically as modes or means of these posterior distributions when
we turn the handle of Bayesian inference.



In sampling theory, the estimators above can be motivated as follows. z is
an unbiased estimator of pu which, out of all the possible unbiased estimators
of p1, has smallest variance (where this variance is computed by averaging over
an ensemble of fictitious experiments in which the data samples are assumed
to come from an unknown Gaussian distribution). The estimator (Z, o) is the
maximum likelihood estimator for (i, o). The estimator oy is biased, however:
the expectation of o, given o, averaging over many imagined experiments,
1s not o. This motivates the invention of o, which can be shown to be an
unbiased estimator. Or to be precise, it is ¢2_, which is an unbiased estimator
of o2.

We now look at some Bayesian inferences for this problem, assuming non-
informative priors for g and o. The emphasis is thus not on the priors, but
rather on (a) the likelihood function, and (b) the concept of marginalization.
The joint posterior probability of g and o is proportional to the likelihood
function illustrated by a contour plot in figure la. The log likelihood is:

—Nlog(V2r0) = (za — 1)*/(26%), (6)

n

log P({zn}n=1 1, o)

= —Nlog(V2ro) — [N(u—z)* + S]/(20%), (7)

where S = 3 (z, — #)?. Given the Gaussian model, the likelihood can be
expressed in terms of the two functions of the data z and S, so these two
quantities are known as ‘sufficient statistics’. The posterior probability of u
and ¢ is, using the improper priors:

P({In}nN:1|M,O')P(/L,U')
P({xn}é\le)
N(u—7)>+S
(271'0%)1‘7/2 €xXp <_ H202 + ) %%

= P(len ) )

This function describes the answer to the question, ‘given the data, and the
noninformative priors, what might ¢ and o be?’ It may be of interest to find
the parameter values that maximize the posterior probability (though it should
emphasized that posterior probability maxima have no fundamental status in
Bayesian inference). Differentiating the log likelihood with respect to p and

log o we find the maximum likelihood solution: {u, o}y, = {i‘, On = 3 /S/N} .

There is more to the posterior distribution than just its mode. As can
be seen in figure la, the likelihood has a skew peak. As we increase o, the
width of the conditional distribution of p increases. And if we fix p to a
sequence of values moving away from the sample mean z, we obtain a sequence
of conditional distributions over o whose maxima move to increasing values of
.

P, ol{zn}n=1) (8)

The next question we might ask is ‘given the data, and the noninformative
prior on u, and assuming a particular value of o, what might pu be?’
The posterior probability of u given o is

P({en}i_1lp, o) P(p)
P({zn}) 1 l0)

P(ul{za}n=1,0) = (10)
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Figure 1: The likelihood function for the parameters of a Gaussian
distribution.

a) Contour plot of the log likelihood as a function of p and . The data set of
N =5 points had mean z = 1.0 and S? = 3 (z — z)? = 1.0. Notice that the
maximum is skew in 0. The two estimators of standard deviation have values
ox = 0.45 and o5, = 0.50.

b) The two graphs show: the likelihood as a function of o, with p fixed to z,
i.e., P(D|p = Z,0) [this is a vertical section through the peak in (a)]; and the
‘evidence’ (marginalized likelihood) for o, P(D|o), assuming a flat prior on u
(rescaled by an arbitrary constant). The evidence is obtained by projecting the
probability mass in (a) onto the ¢ axis. The maximum of P(D|u = Z,0) is at
0. The maximum of P(D|o) is at o .



x exp(=N(u—2)*/(20%) (1)
= Normal(y;z,0%/N). (12)

We note the familiar o/v/N scaling of the error bars on p.

Let us now ask the question ‘given the data, and the noninformative priors,
what might o be?’” This question differs from the first one we asked in that we
are now not interested in p. This parameter must therefore be marginalized
over. The posterior probability of ¢ is:

P({za}p=1]0) P(o)
P({zn}nNzl)

The data-dependent term P({z,})_,|o) appeared earlier as the normalizing
constant in equation (10); one name for this quantity is the ‘evidence’, or
marginalized likelihood, for ¢. We obtain the evidence for o by integrating out
u; a noninformative prior P(u) = 1/0, is assumed. The Gaussian integral,

P({aa}Noilo) = [ P({@a Yo, 0)P() dp, yields:

P(ol{zn}n=1) = (13)

\/ﬁa/m.

The first two terms are the best fit log likelihood (i.e., the log likelihood with
p = Z). The last term is the log of the ‘Occam factor’ which penalizes smaller
values of . When we differentiate the log evidence with respect to log o, to find
the most probable o, the additional volume factor (o/+v/N) shifts the maximum
from oy to

S
log P({n}p=1]0) = —N log(v2m0) — 252 Tlog (14)

ora = /SI(N — 1) (15)

Intuitively, the denominator (N —1) counts the number of noise measurements
contained in the quantity S = " (2, —2)?. The sum contains N residuals-
squared, but there are only (N —1) effective noise measurements because the
determination of one parameter y from the data causes one dimension of noise
to be gobbled up in unavoidable over-fitting. Figure 1b shows the marginalized
likelihood as a function of ¢ along with the likelihood as a function of ¢ with
w1 fixed to its most probable value, z.

The final inference we might wish to make is ‘given the data, what is u?’
To answer this, we marginalize over ¢ and obtain the posterior marginal dis-
tribution of u, which is a Student t-distribution:

N/2

P(ulD) o 1/ (N (i~ 2)” + S) (16)

3 An Approximating Ensemble

I now illustrate the concept of ensemble learning by free energy minimization
by fitting an approximating ensemble Q(u, o) to the posterior distribution (8-
9). Let us make the single assumption that the approximating ensemble is
separable in the form Q(u, o) = Q,(¢)Qo(0). No restrictions on the functional
form of @, (u) and Qo (o) are made.



We write down a variational free energy,
P(Dls, 7) P, )
Qu(1)Qs (o)

We can find the optimal separable distribution @) by considering separately the
optimization of F' over @, (u) for fixed Qo (o), and then the optimization of

Qo (o) for fixed Qu(p).

F(@ = [ dudr Qu(1Qs(z) o (17)

3.1 Optimization of Q),(u)
As a functional of Q,(u), F is:

F

~ [ 1@t | [do @u0) 108 P(DI. o) + 1P QU] | + const

[ s @u) | [ do @ulo1 5500 217 + 1og @) | + const

The dependence on ), thus collapses down to a dependence simply on the
mean = [ do Q,(0)1/0?.
Now we can recognize the function —Nﬁ%(,u — z)? as the log of a Gaussian

identical to the posterior distribution for a particular value of 3 = 3. Since a
divergence [ Qlog(Q/P) is minimized by setting @ = P, we can immediately
write down the distribution szt(,u) that minimizes F' for fixed @Q,:

szt(,u) = P(u|D, 3, 1) = Normal(y; z, UZID)' (18)

where UZID = 1/(NB).

3.2 Optimization of Q),(o)
As a functional of Q. (), F is (neglecting additive constants):

FQ) = - [dr (o) [/du Qu()log P(Dlu, o) + log[P(U)/Qo(U)]]

/da Qo (o) [(No—iw +8)3/2 — (X — 1) log B + log QO(U)}

where the integral over u is performed assuming Q,(u) = Q5P*(u). Here, the
(-dependent expression in the brackets can be recognized as the log of a gamma
distribution over # (see equation (3)), giving as the distribution that minimizes

F for fixed Q,: Q%P(B) = T(B;V',¢'), with 1/b = %(NUZlD—i—S) and ¢/ = N/2.

3.3 Joint optimum Q,(¢)Q, (o)

We now have an implicit equation for the optimal approximating ensemble,
with UiID =1/(Np), and § = b'¢’. The solution is:

1/B=S/(N -1) (19)



Thus we obtain, by ensemble learning, an approximation to the posterior that
agrees nicely with the conventional estimators. The approximate posterior
distribution over § is a gamma distribution with mean 3 corresponding to a
variance of 02 = S/(N —1) = ¢Z_,. And the approximate posterior distribution

over u is a Gaussian with mean z and standard deviation o, /V' N.
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