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Abstract

The standard method for training Hidden Markov Models opti-
mizes a point estimate of the model parameters. This estimate,
which can be viewed as the maximum of a posterior probability
density over the model parameters, may be susceptible to over-
fitting, and contains no indication of parameter uncertainty. Also,
this maximum may be unrepresentative of the posterior probability
distribution. In this paper we study a method in which we optimize
an ensemble which approximates the entire posterior probability
distribution. The ensemble learning algorithm requires the same
resources as the traditional Baum—Welch algorithm.

The traditional training algorithm for hidden Markov models is an expectation—
maximization (EM) algorithm (Dempster et al. 1977) known as the Baum—Welch
algorithm. It is a maximum likelihood method, or, with a simple modification,
a penalized maximum likelihood method, which can be viewed as maximizing a

posterior probability density over the model parameters.

Recently, Hinton and van Camp (1993) developed a technique known as ensem-
ble learning (see also MacKay (1995) for a review). Whereas maximum a poste-
riori methods optimize a point estimate of the parameters, in ensemble learning
an ensemble is optimized, so that it approximates the entire posterior probability
distribution over the parameters. The objective function that is optimized is a vari-
ational free energy (Feynman 1972) which measures the relative entropy between
the approximating ensemble and the true distribution. In this paper we derive and
test an ensemble learning algorithm for hidden Markov models, building on Neal



and Hinton’s (1993) observation that expectation-maximization algorithms can be
viewed as variational free energy minimization methods.

1 The Model

We use similar notation to Rabiner and Juang (1986).

e S ={s1,82,...,s7}: hidden state sequence. (s € 1...1)

o X ={z1,zq,...,x7}: observed sequence. (zx € 1... M)

o A ={a;;}, a;; = P(st41 = j|s: = 1): state transition probability matrix
e B ={bin}, bim = P(x: = m|s; = i): emission probabilities.

o m={m}, m = P(s; = i): initial state distribution.

e 0 = {A B, 7}: model’s parameters.

e U= {u(A), ulB), u(”)}: hyperparameters which define the prior over 6.

For given parameters 6, the probability of the hidden state sequence and the ob-
served data is

P(X,8)0) = lﬂa+] lesm] L (1)

t=1

The posterior probability of the hidden variables S given X and @ is given by

P(S|X,0) = ﬁ [ﬁa+] leW] Tsrs (2)

where

P(X]0) ZP (X,510). (3)

We assume a prior probability over the parameters # that is a product of Dirichlet
distributions:

P (ipi - 1) (4)

Dirichlet (p;u) =

||::]~

where § is a delta function which ensures p is normalized, and

Z() = —Hi?(g)(un' (5)

Here we have defined u = > u;. All the hyperparameters u; are positive, with
larger values of u corresponding to stronger priors. We set the prior on A to

P(Alu)) = H Dirichlet ({a;1 ... air}; u(A))’ (6)



with similar priors on B and .

The reason for choosing these priors is that they give a direct correspondence be-
tween the standard penalized maximum likelihood method in which ‘initial counts’
or ‘offsets’ u; are placed in the bins of the Baum—Welch algorithm and a maximum
a posteriori method, if the posterior density is maximized in the ‘softmax’ basis
(MacKay 1996) where each probability vector p is represented by parameters a

such that
pi(a) = e* [y et (7)

1.1 The standard Baum—Welch optimization

The Baum—Welch algorithm (with penalty terms U) is an iterative algorithm that
increases P(0|X) at each iteration until a maximum is reached. In each iteration, a
forward—backward step computes the probabilities of state sequences S conditioned
on the current parameters ¢, then an M—step updates the parameters 6.

The forward and backward probabilities a(t) and () are given by

~ T o ®)
a;t+1) = |:Zi\;1 az('t)aij} bjévt+1 ﬁz(t) - bim Zj'vzlaijﬁj('“-l)

The M—step is expressed in terms of nl(»;»), the posterior probability that there was

a transition between state ¢ and state j at timestep ¢ given X and 6,

nf) = SP(SIX,0)6(si = i sian = 4) ©)
S
1 1)
= Zagt)aijﬁ](ﬁ‘ (10)

where Z, is a normalizing constant such that ijzl "z(;) = 1. Then the M-step is

uld) [ -1 (?)}
R B (11)
LY A) T-1 (t ’
Zj’:l U;»/ ) + |: t=1 Inl(]21|}

There are similar expressions for the updates of B and .

2 Ensemble Learning for HMMs

The posterior distribution of the parameters § = {A,B, 7} and hidden state
sequence S given an observation sequence X and fixed hyperparameters, U,
P(S,0|X,U), is to be approximated by an ensemble Q(S,f). We will constrain
our approximating distribution to be separable, such that

Q(S,0) = Qs(S)Ra(A)Qp(B)Qr(). (12)

We will make no further constraining assumptions about the functional forms of

the constituent distributions Qs(S), Qa(A) @p(B), Qx (7).



Term S A B bis U

ity Y (e, —1) log a * *
Yoty Y7L, (ue,, —1) log by * *
Zﬁ\;l(um—l)log T * *
tT:_i log Asysyq1 * *
ST log by, * *
log 75, * *

Table 1: Dependencies of the terms of equation (14).

To measure the closeness of the ensemble to the posterior, we define the free energy

F(Q(S,0)):

Our iterative strategy for optimizing @ is sequentially to optimize each of Q4, @5,
@~ and @ g, while keeping the other three distributions fixed. Looking ahead, it will
turn out that the optimized distributions 4, @p and @, are all Dirichlet distri-
butions, and the optimized distribution ()g is a distribution similar to the posterior
distribution in equation (2), so that these optimizations can be performed with
the same computational resources as the Baum—-Welch algorithm. Because F(Q) is
bounded below (by —log P(X|U)), and each individual minimization decreases F,
the ensemble learning algorithm is guaranteed to converge.

We first dissect the log—probability appearing in the free energy and note its depen-
dence on the parameters and hyperparameters S, A, B, 7, U in table 1.

I I M
log P(X,5,01U0) = Y (i ~1)logai; + 3 3 (uf® ~1) log by
i,j=1 i=1 m=1

+ Zle(ugw) —1)logm; + ZtT:_i logas,s,,, + Zthl logbs,z, + logms, + const. (14)

We now derive the optimization steps for F over Qa,Q@p, @, and Qg respectively.

2.1 Optimization of Q4

As a functional of Q 4, with @B, Qr, Qs fixed, F' (Q) can be expressed as follows:

I T-1
F@1) = — [, Qa(a) | 3 WY -1)logas + 35 Qs(8) 3 log s
A i,j=1 S t=1

—log Q@a(A)] + const. (15)



Now, defining a quantity w like n in the Baum—-Welch algorithm,

= Qs(5)d(se =1, 50401 = ), (16)
s
we have
F(Qa) / Qa(A)log [% + const., (17)
i, g
where
T-1
Wi =3 wi) +u; (18)
t=1

Now, by Gibbs’s inequality, the expression fx Q(z) log 1%(”% is minimized with re-

spect to @Q(z) by Q(z) = %P*(r) where 7 is the appropriate normalizing constant.
So to minimize F4(Q4)), we choose the distribution @4 to be a product of Dirichlet

distributions:
Qa(A) = ] Dirichlet ({ai; }_y; {Wii},) (19)

Similarly, the optimal distributions @p and @ are products of Dirichlet distribu-
tions defined in terms of

:ZQS(S)5(St =42 =m) and w] ZQS d(s1 =1). (20)

2.2  Optimization of Qg(95)

As a functional of Qs(S), with Qa, @, @r fixed, F' (@) can be expressed as follows:

FQs(9) = =32 0s(3) | [ @alA) Llogauns + [ Q(B)Y ol

—1—/ Qr(m)log s, — log QS(S)] + const. (21)
Now, defining
” = exp [/ Qa(A loga”] , b, =exp UB Q5 (B) log bik] , (22)

and 7} = exp [f Qr(m)log 7rl] we can write

F(Qs(9)) = EQS(S) log [ = Qs(5) ] + const. (23)
S Ht 1a5151+1} {Ht 1 sw:} ng

The optimal distribution @s(S) which minimizes F'(Qs(S)) is thus:

QS(S) = ZLS 1:[ stst+1] H stx¢‘| (24)

Lt=1 =




where Zg is a normalizing constant. Note the resemblance between this distribution
and the posterior distribution P(S|X,#) in equation (2). The only difference is that
here a*, b* and 7* are not normalized probability vectors. In fact, since they are the
geometric means of a;;, b;; and m; under the distribution @}, they are subnormalized,
i.e., satisfy >, pr < 1.

The circle is now complete. If, as in section 2.1, @4 and g have been set to
products of Dirichlet distributions, and @ is a Dirichlet distribution (equation (19))

we can obtain a*, b* and 7* using
| pirichet (piw)tog ps = ¥ (u) ~ v (1) (25)
p
where
P(x) = %bgr(;p) and u=">uj. (26)

J
Then we can calculate the relevant properties of the optimal distribution Qg(S),
the quantities w, using the forward-backward algorithm, just as n is obtained in
equations (8) and (10). (The forward-backward algorithm is not affected by the
fact that a* etc. are subnormalized.)

Ensemble learning is thus a computationally inexpensive modification of the Baum—

Welch algorithm.

3 Work in progress

The ensemble learning method is currently being applied to toy problems with
hidden Markov models. We train two hidden Markov models as models of two
distinct sources (for example, forwards English text and backwards English text)
and then test the discriminative performance of these models on unseen test data
from the two sources. We compare the results when both models are trained using
the traditional Baum—Welch algorithm, and when they are trained by ensemble
learning.

Work has still to be done on the following issues.

1. The question of how to get predictions from an optimized ensemble: a
simple approach is to extract a single representative HMM by selecting the
mean value of the parameters.

2. The option of simultaneous optimization of hyperparameters, following
MacKay and Peto (1995): for simplicity, our initial investigations are using
fixed hyperparameters.

4 Discussion

Will ensemble learning be a useful method for training hidden Markov models? The
hope is that since it takes into account parameter uncertainty during optimization,
there may be cases (for example, data—poor problems) where the optimized ensemble



gives a better representation of the posterior distribution than the mode of the
posterior.

We can note that the standard penalized maximum likelihood method is a special
case of ensemble learning in which we constrain the approximating distribution to
be a product of a distribution Qg (S) and a product of adaptable delta functions,

QMAP (5 0) = QS(S)a(a—é). (27)
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