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Abstract

An algorithm is derived for inferring a binary vector s given noisy observations of
Asmodulo2, where A is a binary matrix. The binary vector is replaced by a vector of
probabilities, optimized by free energy minimization. Experiments on the inference of the
state of a linear feedback shift register indicate that this algorithm supersedes Meier and

Staffelbach’s polynomial algorithm.

Index: approximate inference, combinatorial optimization, stream cipher.
Consider three binary vectors: s of length V, and z and n of length M > N, related by:
(As+n)mod2 =1z (1)

where A is a binary matrix. Our task is to infer s given z and A, and given assumptions about
the statistical properties of s and n. This problem arises in the decoding of a noisy signal
transmitted using a linear code A, and in the inference of the sequence of a linear feedback
shift register (LF'SR) from noisy observations [1, 2].

I assume that the prior probability distribution of s and n is separable thus: P(s,n) =
[1, P(sn) [1,, P(nm). The log probability of z as a function of s can be written in terms of the
noise free vector t(s) = Asmod 2:

log P(z|s, A) = E tm (s) gm + const. (2)
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where g, = log[P(n,, =1)/P(n, =0)] if 2, =0 and g¢,, = —log[P(n,, = 1)/P(n, =0)] if
zm = 1. The posterior distribution of s is, by Bayes’ theorem:
P(z|s,A)P(s

P(s|z, A) = % (3)
[ assume our aim is to find the most probable s, but that an exhaustive search over all 2%V
possible sequences s is not feasible. One way to attack such a combinatorial optimization
problem is via a related continuous problem in which the discrete variables are replaced by real
variables [3]. Here I derive a continuous representation in terms of a free energy approximation
[4]. I approximate the awkward probability distribution (3) by a simpler separable distribution
Q(s;0) =11, ¢n(sn; 0,), parameterized thus:

1

TFetn = = tn; 4u(52=050,) = 1 — ¢, = g5 (4)

Gn(sn=1;0n) =
The parameters 8 are adjusted to find a #* that minimizes the variational free energy,

Q(s; 0)
EQSHlogP(lsA)() (5)

the hope being that the s that maximizes Q(s; #*) may also maximize P(s|z, A). Although F
is defined by a summation over the 2V discrete values of s, it is possible to evaluate F and
its gradient JF/00 in a time that is proportional to the weight of A, wa (i.e., the number of
ones in A), as will now be shown.

F separates into three terms, F(6) = Er(6) + Ep(6) — S(0), where the ‘entropy’is: S(8) =
— Y6 Q(s:0)log Q(s;0) = — 3, [¢2log ¢ + ¢} log 1] , with derivative: 75-S(0) = —qlg}0;
the ‘prior energy’ is: FEp(8) = —> cQ(s;0)logP(s) = =3, b,q where b, = log[P(s, =
1)/P(s,=0)], and has derivative 8%EP(H) —q°%q¢lb,; and the ‘likelihood energy’ is:

Er(6 ——EQSH )log P(z]s, A) = ngZQSH s) + const. (6)

We can compute > g Q(s; 0) t,.(s) for each m by a ‘forward’ recursion involving a sequence of
probabilities p},w and p?,w forv =1...N, defined to be the probabilities that the partial sum
tly =5 _ A8, mod?2 is equal to 1 and 0 respectively. These probabilities satisfy:

n=1
1 0,1 1,0 1 1
= 1 T . = Pm
pgz,y qz(;p';r,u—l qz;p';n,y—l } if Amy _ 1’ else { p'(r)n,y p'rr,u—l ’ (7)
pm,l/ = qypm,u—1+qupm,u—1 pm,l/ = pm,u—l
with initial condition pl o = 0,p), o = 1. We obtain: FEp(f) = _ngmpin,N- The

derivative of Ej with respect to 6, can be obtained by evaluating for each m a ‘reverse’

L and r0@

sequence of probabilities r, , A
k)

defined to be the probabilities that the partial



sum /N = ZnN:y Apnspmod?2 is equal to 1 and 0 respectively. Then using the rela-
tion p,}mN = qy (qun,n—1 rgl,n-}—l + pofm,n—lr'}n,n-l—l) + 4 (p71n,n—1 rrln,n-H + sz,n—1 r?n,n—l—l) and defining
dppn, = (pin7n_1r71n7n_|_1 + p?nm_l r?nm_l_l) — (pinm_l r?nm_l_l + p?nm_lr}n’n_l_l), we obtain the derivative
%EL(O) = —¢%¢ >, Gmdmn. Thus the derivative of the free energy is:

oF

The assignment:

sets the derivative to zero and is guaranteed to reduce the free energy. This re-estimation
equation can be efliciently interleaved with the reverse recursion, giving a simple optimizer
of F. Optimizers of F' can be modified by using ‘deterministic annealing’ [5], in which the
non-convexity of the objective function F is switched on gradually by varying an ‘inverse
temperature’ 8 from 0 to 1. This procedure is intended to prevent the algorithm from running
into the local minimum that the initial gradient points towards. We define F'(6, ) = BEL(0) +
Ep(8)—S5(8), and perform a sequence of minimizations of this function over § with successively
larger values of 3.

The success of the algorithm is expected to depend on the representation of s, with best
results if A is sparse and the true posterior distribution over s is close to separable.

Computational complexity: The algorithm is expected to take of order 1, or at most
N, gradient evaluations to converge, so that the total time taken is of order between wp and

wA N. Memory proportional to wp is required.

Cryptanalysis application

Various demonstrations of this algorithm are given in [6]. Here I describe an application to a
cryptanalysis problem, building on the method of Meier and Staffelbach [1]. Assume a LFSR
of length k bits with ¢ taps produces a sequence ag of length N bits, and noisy observations
a; = (ap + s) mod 2 are made (for details see [1],[2]). Here s is a sparse noise vector of length
N. For N > k, as in ref. [1], we can create a sparse M x N matrix A of parity checks such
that Aagmod 2 = 0, each row of A having weight (£41). The noisy sequence a; violates some
of these parity checks as described by the vector z = Aa;. Then our problem is to find the
noise vector s that satisfies:

Asmod2 =z, (10)



and that has maximum prior probability, given our knowledge of the noisy observation process.
[There are many (2*) values of s satisfying equation (10), one for each of the possible initial
LFSR states.] In (10), unlike (1), there is no noise added to As. However, we can apply the
free energy method to a sequence of problems of the form (As+ n) mod 2 = z with increasing

inverse temperature 3, such that the noise—free task is the limiting case, g = oc.

Experimental results

Test data were created for specified k& and N using random taps in the LFSR and random
observation noise with fixed uniform probability. The parameter g was initially set to 0.25.
For each value of 3, the optimization was run until the decrease in free energy was below a
specified tolerance (0.001). § was increased by factors of 1.4 until either the most probable

vector under ()(s;#) satisfied (10), or until a maximum value of § = 4 was passed.
Figure 1 here.

Results are shown in figure 1. Each dot represents an experiment. A box represents a
successful decoding. On each graph a horizontal line shows an information theoretic noise
bound above which one does not expect to be able to infer s, and two curved lines, from tables
3 and 5 of ref. [1], show (lower line) the limit up to which Meier and Staffelbach’s ‘algorithm
B appeared to be very successful in most experiments’ and (upper line) the theoretical bound

beyond which their approach is definitely not feasible.

Conclusion

This paper has derived an algorithm with a well-defined objective function for inference prob-
lems in modulo 2 arithmetic. In application to a cryptanalysis problem, this algorithm is
similar to Meier and Staffelbach’s [1] algorithm B and thus answers their question of whether
a derivation could be provided. But it is not identical: the details of the mapping from
[0,1]Y — [0,1]V are different, and there is no analogue of their multiple ‘rounds’ in which
the data vector a; is changed. The new algorithm appears to give superior performance and
frequently succeeds at parameter values right up to the upper theoretical limits derived by

Meier and Staffelbach.
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Figure 1: Results for cryptanalysis problem as a function of number of taps (horizontal axis)

and noise level (vertical).



