FOUNTAIN CODES

David J.C. MacKay

Cavendish Laboratory, University of Cambridge

Keywords
Sparse-graph code, erasure channel,
passing, LT code, raptor code.

message-

Abstract

Fountain codes are record-breaking sparse-graph
codes for channels with erasures — such as the in-
ternet, where files are transmitted in multiple small
packets, each of which is either received without er-
ror or not received.

Standard file-transfer protocols simply chop a file
up into K packet-sized pieces, then repeatedly trans-
mit each packet until it is successfully received. A
back-channel is required for the transmitter to find
out which packets need retransmitting. In contrast,
fountain codes make packets that are random func-
tions of the whole file. The transmitter sprays pack-
ets at the receiver without any knowledge of which
packets are received. Once the receiver has received
any NN packets, where N is just slightly greater than
the original file-size K, he can recover the whole file.

In this paper I review random linear fountain
codes, LT codes, and raptor codes. The computa-
tional costs of the best fountain codes are astonish-
ingly small, scaling linearly with the file size.

1 Erasure channels

Channels with erasures are of great importance. For
example, files sent over the internet are chopped into
packets, and each packet is either received without
error or not received. Noisy channels to which good
error-correcting codes have been applied also behave
like erasure channels: much of the time, the error-
correcting code performs perfectly; occasionally, the
decoder fails, and reports that it has failed, so the
receiver knows the whole packet has been lost. A
simple channel model describing this situation is a
g-ary erasure channel (figure 1), which has (for all
inputs in the input alphabet {0,1,2,...,¢q—1}) a
probability 1— f of transmitting the input without
error, and probability f of delivering the output ‘7.

© 1998 IEE, WODES98 — Cagliari, Italy
Proc. of the Fourth Workshop on Discrete Event Systems

Figure 1. An erasure channel — the 8-ary erasure chan-
nel. The eight possible inputs {0,1,2,...,7} are here
shown by the binary packets {000,001, 010,...,111}.

The alphabet size ¢ is 2!, where [is the number of
bits in a packet.

Common methods for communicating over such
channels employ a feedback channel from receiver
to sender that is used to control the retransmission
of erased packets. For example, the receiver might
send back messages that identify the missing pack-
ets, which are then retransmitted. Alternatively, the
receiver might send back messages that acknowledge
each received packet; the sender keeps track of which
packets have been acknowledged and retransmits the
others until all packets have been acknowledged.

These simple retransmission protocols have the
advantage that they will work regardless of the era-
sure probability f, but purists who have learned their
Shannon theory will feel that these protocols are
wasteful. If the erasure probability f is large, the
number of feedback messages sent by the first pro-
tocol will be large. Under the second protocol, it’s
likely that the receiver will end up receiving mul-
tiple redundant copies of some packets, and heavy
use is made of the feedback channel. According to
Shannon, there is no need for the feedback channel:
the capacity of the forward channel is (1— f)I bits,
whether or not we have feedback. Reliable communi-
cation should be possible at this rate, with the help
of an appropriate forward error-correcting code.

The wastefulness of the simple retransmission

protocols is especially evident in the case of a broad-
cast channel with erasures — channels where one
sender broadcasts to many receivers, and each re-
ceiver receives a random fraction (1—f) of the pack-
ets. If every packet that is missed by one or more
receivers has to be retransmitted, those retransmis-
sions will be terribly redundant. Every receiver
will have already received most of the retransmitted
packets.

So, we would like to make erasure-correcting
codes that require no feedback or almost no feedback.
The classic block codes for erasure correction are
called Reed—Solomon codes [1, 3]. An (N, K) Reed—
Solomon code (over an alphabet of size ¢ = 2') has
the ideal property that if any K of the N transmitted
symbols are received then the original K source sym-
bols can be recovered. [Reed—Solomon codes exist for
N < ¢.] But Reed—Solomon codes have the disadvan-
tage that they are practical only for small K, N, and
q: standard implementations of encoding and decod-
ing have a cost of order K (N—K) log, N packet oper-
ations. Furthermore, with a Reed—Solomon code, as
with any block code, one must estimate the erasure
probability f and choose the code rate R = K/N be-
fore transmission. If we are unlucky and f is larger
than expected and the receiver receives fewer than
K symbols, what are we to do? We’d like a simple
way to extend the code on the fly to create a lower-
rate (N/, K) code. For Reed—Solomon codes, no such
on-the-fly method exists.

There is a better way, pioneered by Michael Luby
(2002).

2 Fountain codes

The encoder of a fountain code is a metaphorical
fountain that produces an endless supply of water
drops (encoded packets); let’s say the original source
file has a size of Kl bits, and each drop contains [
encoded bits. Now, anyone who wishes to receive the
encoded file holds a bucket under the fountain and
collects drops until the number of drops in the bucket
is a little larger than K. They can then recover the
original file.

Fountain codes are rateless in the sense that the
number of encoded packets that can be generated
from the source message is potentially limitless; and
the number of encoded packets generated can be de-
termined on the fly. Fountain codes are universal be-
cause they are simultaneously near-optimal for every
erasure channel. Regardless of the statistics of the
erasure events on the channel, we can send as many
encoded packets as are needed in order for the de-
coder to recover the source data. The source data
can be decoded from any set of K’ encoded packets,
for K’ slightly larger than K. Fountain codes can
also have fantastically small encoding and decoding

Original generator matrix

11 L R I B |
1
1
1

N

Figure 2. The generator matrix of a random linear code
(top). When the packets are transmitted, some are
not received, shown by the grey shading of the packets
and the corresponding columns in the matrix. We can
realign the columns to define the generator matrix,
from the point of view of the receiver (bottom).

complexities.

To start with, we’ll study the simplest fountain
codes, which are random linear codes.

3 The random linear fountain

Consider the following encoder for a file of size K
packets s1ss...sk. A ‘packet’ here is the elementary
unit that is either transmitted intact or erased by
the erasure channel. We’ll assume that a packet is
composed of a whole number of bits.

At each clock cycle, labelled by n, the encoder
generates K random bits { Gy, }, and the transmitted
packet ¢, is set to the bitwise sum, modulo 2, of the
source packets for which G, is 1.

K
tn, = ZSkan. (1)
k=1

This sum can be done by successively exclusive-or-
ing the packets together. You can think of each set
of K random bits as defining a new column in an
ever growing binary generator matrix, as shown at
the top of figure 2.

Now, the channel erases a bunch of the packets;
a receiver, holding out his bucket, collects N pack-
ets. What is the chance that the receiver will be able

0.01

Probability of failure

10 15 20

0 2 4 6
Nunber of redundant packets

Figure 3. Performance of the random linear fountain.
The solid line shows the probability that complete
decoding is not possible as a function of the number
of excess packets, E. The thin dashed line shows the
upper bound, 277, on the probability of error.

to recover the entire source file without error? Let’s
assume that he knows the fragment of the generator
matrix G associated with his packets — for example,
maybe G was generated by a deterministic random-
number generator, and the receiver has an identical
generator that is synchronized to the encoder’s. Al-
ternatively, the sender could pick a random key, k,
given which the K bits {Gy,} | are determined by
a pseudo-random process, and send that key in the
header of the packet. As long as the packet size [is
much bigger than the key size (which need only be 32
bits or so), this key introduces only a small overhead
cost. In some applications, every packet will already
have a header for other purposes, which the fountain
code can use as its key. For brevity, let’s call the
K-by—N matrix fragment ‘G’ from now on.

Now, as we were saying, what is the chance that
the receiver will be able to recover the entire source
file without error?

If N < K, the receiver hasn’t got enough infor-
mation to recover the file. If N = K, it’s conceivable
that he can recover the file. If the K—by—K matrix
G is invertible (modulo 2), the receiver can com-
pute the inverse G~! by Gaussian elimination, and
recover

N
se= Y tnGpy. (2)
n=1

So, what’s the probability that a random K-by—K
binary matrix is invertible? It’s the product of K
probabilities, each of them the probability that a
new column of G is linearly independent of the pre-
ceding columns. The first factor, is (1 —27%), the
probability that the first column of G is not the all-
zero column. The second factor is (1 — 2*(K*1)), the
probability that the second column of G is equal nei-
ther to the all-zero column nor to the first column of
G, whatever non-zero column it was. Iterating, the
probability of invertibility is

(1-275) (1 -2 x

)-8

which is 0.289, for any K larger than 10. That’s
not great (we would have preferred 0.999!) but it’s
promisingly close to 1.

What if N is slightly greater than K7 Let
N = K + E, where E is the small number of ex-
cess packets. Our question now is, what is the prob-
ability that the random K-by—N binary matrix G
contains an invertible K—by—K matrix? Let’s call
this probability 1 — §, so that § is the probability
that the receiver will not be able to decode the file
when E excess packets have been received. This fail-
ure probability ¢ is plotted as a function of E for the
case K = 100 in figure 3 (it looks identical for all
K > 10). For any K, the probability of failure is
bounded above by

S(E)<27F. (3)
This bound is shown by the thin dotted line in fig-
ure 3.

In summary, the number of packets required to
have probability 1 — ¢ of success is ~ K + log, 1/4.
The expected encoding cost per packet is K /2 packet
operations, since on average half of the packets must
be added up. (A packet operation is the exclusive-or
of two packets of size [bits.) The expected decoding
cost is the sum of the cost of the matrix inversion,
which is about K2 binary operations, and the cost of
applying the inverse to the received packets, which
is about K2/2 packet operations.

While a random code is not in the technical sense
a ‘perfect’ code for the erasure channel (it has only a
chance of 0.289 of recovering the file when K pack-
ets have arrived), it is almost perfect. An excess of
FE packets increases the probability of success to at
least (1 — §), where § = 2=F. Thus, as the file size
K increases, random linear fountain codes can get
arbitrarily close to the Shannon limit. The only bad
news is that their encoding and decoding costs are
quadratic and cubic in the number of packets en-
coded. This scaling is not important if K is small
(less than one thousand, say); but we’d prefer a so-
lution with lower computational cost.

4 Intermission

Before we study better fountain codes, it will help to
solve the following exercises. Imagine that we throw
balls independently at random into K bins, where K
is a large number such as 1000 or 10 000.

1. After N = K balls have been thrown, what
fraction of the bins do you expect have no balls
in them?

2. If we throw three times as many balls as there
are bins, is it likely that any bins will be empty?

Roughly how many balls must be thrown for it
to be likely that every bin has a ball?

3. Show that in order for the probability that all
K bins have at least one ball to be 1 — §, we
require N ~ K log,(K/J) balls.

Rough calculations like these are often best solved
by finding expectations instead of probabilities. In-
stead of finding the probability distribution of the
number of empty bins, we find the expected number
of empty bins. This is easier because means add,
even where random variables are correlated.

The probability that one particular bin is empty
after N balls have been thrown is

<1%)N~6N/K. (4)

So when N = K, the probability that one particular
bin is empty is roughly 1/e, and the fraction of empty
bins must be roughly 1/e too. If we throw a total
of 3K balls, the empty fraction drops to 1/e?, about
5%. We have to throw a lot of balls to make sure
all the bins have a ball! For general N, the expected
number of empty bins is

Ke N/K, (5)

This expected number is a small number ¢ (which
roughly implies that the probability that all bins
have a ball is (1—4)) only if

K
N > Klog, 5 (6)

5 The LT code

The LT code retains the good performance of the
random linear fountain code, while drastically reduc-
ing the encoding and decoding complexities. You can
think of the LT code as a sparse random linear foun-
tain code, with a super-cheap approximate decoding
algorithm.

5.1 Encoder

Each encoded packet ¢, is produced from the source
file 18983 ... sk as follows:

1. Randomly choose the degree d,, of the packet
from a degree distribution p(d); the appropri-
ate choice of p depends on the source file size
K, as we’ll discuss later.

2. Choose, uniformly at random, d,, distinct input
packets, and set t, equal to the bitwise sum,
modulo 2, of those d,, packets.

Figure 4. Example decoding for a fountain code with K =
3 source bits and N = 4 encoded bits. From [5].

This encoding operation defines a graph connect-
ing encoded packets to source packets. If the mean
degree d is significantly smaller than K then the
graph is sparse. We can think of the resulting code
as an irregular low-density generator-matrix code.

5.2 Decoder

Decoding a sparse-graph code is especially easy in
the case of an erasure channel. The decoder’s task
is to recover s from t = s, where G is the matrix
associated with the graph. (Just as in the random
linear fountain code, we assume the decoder some-
how knows the pseudorandom matrix G.)

The simple way to attempt to solve this problem
is by message-passing. We can think of the decoding
algorithm as the sum—product algorithm [5, Chs. 16,
26, and 47] if we wish, but all messages are either
completely uncertain or completely certain. Uncer-
tain messages assert that a message packet s; could
have any value, with equal probability; certain mes-
sages assert that s; has a particular value, with prob-
ability one.

This simplicity of the messages allows a simple
description of the decoding process. We'll call the

0.5

rho
tau
0.4
0.3
0.2
0.1
0 Ih h“um ,,,,,,,,,,,,,,,,

0 10 20 30 40 50

Figure 5. The distributions p(d) and 7(d) for the case
K =10000, ¢ = 0.2, § = 0.05, which gives S = 244,
K/S =41, and Z ~ 1.3. The distribution 7 is largest
at d=1and d = K/S. From [5].

encoded packets {t,} check nodes.

1. Find a check node ¢,, that is connected to only
one source packet sp. (If there is no such
check node, this decoding algorithm halts at
this point, and fails to recover all the source
packets.)

(a) Set s = ty,.

(b) Add s to all checks t,,/ that are connected
to sg:

tn = tn + s for all n' such that G =1.

(c) Remove all the edges connected to the
source packet sj.

2. Repeat (1) until all {s;} are determined.

This decoding process is illustrated in figure 4 for
a toy case where each packet is just one bit. There
are three source packets (shown by the upper circles)
and four received packets (shown by the lower check
symbols), which have the values t1tot3ty = 1011 at
the start of the algorithm.

At the first iteration, the only check node that
is connected to a sole source bit is the first check
node (panel a). We set that source bit s; accordingly
(panel b), discard the check node, then add the value
of s1 (1) to the checks to which it is connected (panel
c), disconnecting s; from the graph. At the start of
the second iteration (panel c), the fourth check node
is connected to a sole source bit, s5. We set sy to
t4 (0, in panel d), and add sz to the two checks it
is connected to (panel e). Finally, we find that two
check nodes are both connected to ss, and they agree
about the value of s3 (as we would hope!), which is
restored in panel f.

140 del
elta=0.01 ——
120 | delta=0.1 ------- y
100 delta=0.9 --------
80
60
40
20
0 =
0.01 0.1
11000 ;
delta=0.01 /
10800 delta=0.1 ------- Y
delta=0.9 --------
10600 s
10400
10200
10000 =7

Figure 6. The number of degree-one checks S (upper fig-
ure) and the quantity K’ (lower figure) as a func-
tion of the two parameters ¢ and 4, for K = 10000.
Luby’s main theorem proves that there exists a value
of ¢ such that, given K’ received packets, the decod-
ing algorithm will recover the K source packets with
probability 1 — §. From [5].

5.3 Designing the degree distribution

The probability distribution p(d) of the degree is a
critical part of the design: occasional encoded pack-
ets must have high degree (i.e., d similar to K) in
order to ensure that there are not some source pack-
ets that are connected to no-one. Many packets must
have low degree, so that the decoding process can get
started, and keep going, and so that the total num-
ber of addition operations involved in the encoding
and decoding is kept small. For a given degree dis-
tribution p(d), the statistics of the decoding process
can be predicted by an appropriate version of density
evolution, a technique first developed for low-density
parity-check codes [5, p. 566].

Before giving Luby’s choice for p(d), let’s think
about the rough properties that a satisfactory p(d)
must have. The encoding and decoding complexity
are both going to scale linearly with the number of
edges in the graph, so the crucial quantity is the
average degree of the packets. How small can this
be? The balls-in-bins exercise helps here: think of
the edges that we create as the balls and the source
packets as the bins. In order for decoding to be suc-
cessful, every source packet must surely have at least
one edge in it. The encoder throws edges into source
packets at random, so the number of edges must be
at least of order K log, K. If the number of packets
received is close to Shannon’s optimal K, and de-
coding is possible, the average degree of each packet
must be at least log, K, and the encoding and de-
coding complexity of an LT code will definitely be
at least K log, K. Luby showed that this bound on
complexity can indeed be achieved by a careful choice

T —

10000 10500 11000 11500 12000

I

10000 10500 11000 11500 12000

10000 10500 11000 11500 12000

Figure 7. Histograms of the actual number of packets N
required in order to recover a file of size K = 10000
packets. The parameters were as follows:

top histogram: ¢ =0.01, 6 =0.5 (S =10, K/S =
1010, and Z ~ 1.01);

middle: ¢ = 0.03, 6 = 0.5 (S = 30, K/S = 337,
and Z ~ 1.03);

bottom: ¢ = 0.1, 6§ = 0.5 (S =99, K/S = 101,
and Z ~1.1). From [5].).

of degree distribution.

Ideally, to avoid redundancy, we’d like the re-
ceived graph to have the property that just one check
node has degree one at each iteration. At each itera-
tion, when this check node is processed, the degrees
in the graph are reduced in such a way that one new
degree-one check node appears. In expectation, this
ideal behaviour is achieved by the ideal soliton dis-
tribution,

o) = 1/K .
pld) = A=) ford=2,3,.... K.

The expected degree under this distribution is
roughly log, K.

This degree distribution works poorly in practice,
because fluctuations around the expected behaviour
make it very likely that at some point in the decod-
ing process there will be no degree-one check nodes;
and, furthermore, a few source nodes will receive no
connections at all. A small modification fixes these
problems.

The robust soliton distribution has two extra pa-
rameters, ¢ and ¢; it is designed to ensure that the
expected number of degree-one checks is about

S = clog, (K/6)VEK, (8)

rather than 1, throughout the decoding process. The
parameter § is a bound on the probability that the
decoding fails to run to completion after a certain

10000 - Nymber decoded
8000

6000

4000

2000

0 |
0 2000 4000 6000 8000 10000 12000

Figure 8. Practical performance of LT codes. Three ex-
perimental decodings are shown, all for codes created
with the parameters ¢ = 0.03, 6 = 0.5 (S = 30,
K/S = 337, and Z ~ 1.03) and a file of size K =
10000. The decoder is run greedily as packets arrive.
The vertical axis shows the number of packets de-
coded as a function of the number of received packets.
The right-hand vertical line is at a number of received
packets N = 11000, i.e., an overhead of 10%.

number K’ of packets have been received. The pa-
rameter ¢ is a constant of order 1, if our aim is to
prove Luby’s main theorem about LT codes; in prac-
tice however it can be viewed as a free parameter,
with a value somewhat smaller than 1 giving good
results. We define a positive function

51 for d=1,2,...(K/S)» 1
7(d) = % log(S/6) ford=K/S
0 ford > K/S

(9)
(see figure 5) then add the ideal soliton distribution
p to 7 and normalize to obtain the robust soliton
distribution, u:

() = LT, (10)

where Z = ", p(d) + 7(d). The number of encoded
packets required at the receiving end to ensure that
the decoding can run to completion, with probability
at least 1 — 6, is K' = KZ.

Luby’s analysis [4] explains how the small-d end
of 7 has the role of ensuring that the decoding pro-
cess gets started, and the spike in 7 at d = K/S is
included to ensure that every source packet is likely
to be connected to a check at least once. Luby’s
key result is that (for an appropriate value of the
constant ¢) receiving K’ = K + 2log,(S/6)S checks
ensures that all packets can be recovered with prob-
ability at least 1 — §. In the illustrative figures I
have set the allowable decoder failure probability ¢§
quite large, because the actual failure probability is
much smaller than is suggested by Luby’s conserva-
tive analysis.

In practice, LT codes can be tuned so that a file
of original size K ~ 10000 packets is recovered with
an overhead of about 5%. Figure 7 shows histograms
of the actual number of packets required for a couple

R A0
S

==

v
YA\

\A(g
‘Ylﬂﬂu <
"’J.
N
\:\\

Figure 9. Schematic diagram of a raptor code. In this
toy example, K = 16 source packets (top row) are
encoded by the outer code into K = 20 pre-coded
packets (centre row). The details of this outer code
are not given here. These packets are encoded into
N = 18 received packets (bottom row) with a weak-
ened LT code. Most of the received packets have de-
gree 2 or 3. The average degree is 3. The weakened
LT code fails to connect some of the pre-coded pack-
ets to any received packet — these 3 lost packets are
highlighted in grey. The LT code recovers the other
17 pre-coded packets, then the outer code is used to
deduce the original 16 source packets.

of settings of the parameters, achieving mean over-
heads smaller than 5% and 10% respectively. Fig-
ure 8 shows the time-courses of three decoding runs.
It is characteristic of a good LT code that very little
decoding is possible until slightly more than K pack-
ets have been received, at which point, an avalanche
of decoding takes place.

6 Raptor codes

You might think that we couldn’t do any better than
LT codes: their encoding and decoding costs scale
as Klog, K, where K is the file size. But raptor
codes [8] achieve linear time encoding and decoding
by concatenating a weakened LT code with an outer
code that patches the gaps in the LT code.

LT codes had decoding and encoding complexity
that scaled as log, K per packet, because the average
degree of the packets in the sparse graph was log, K.
Raptor codes use an LT code with average degree d
about 3. With this lower average degree, the decoder
may work in the sense that it doesn’t get stuck, but
a fraction of the source packets will not be connected
to the graph and so will not be recovered. What frac-
tion? From the balls-in-bins exercise, the expected
fraction not recovered is f = e~ ¢ which for d = 3 is
5%. Moreover, if K is large, the law of large numbers
assures us that the fraction of packets not recovered

10000
max degree 8 ———
max degree K --------

8000

6000

4000

2000

0 2000 4000 6000 8000 10000 12000

Figure 10. The idea of a weakened LT code. I truncated
the LT degree distribution with parameters ¢ = 0.03,
0 = 0.5, constraining the maximum degree to be 8.
The resulting graph has mean degree 3. The decoder
is run greedily as packets arrive. As in figure 8, the
thick lines show the number of recovered packets as
a function of the number of received packets. The
thin lines are the curves for the original L'T code from
figure 8. Just as the original LT code usually recov-
ers K = 10000 packets within a number of received
packets N = 11000, the weakened LT code recovers
8000 packets within a received number of 9250.

in any particular realisation will be very close to f .

So, here is Shokrollahi’s trick: we transmit a
K-packet file by first pre-coding the file into K ~
K/(1— f) packets with an excellent outer code that
can correct erasures if the erasure rate is exactly f ;
then we transmit this slightly enlarged file using a
weak LT code that, once slightly more than K pack-
ets have been received, can recover (1 — f)K of the
pre-coded packets, which is roughly K packets; then
we use the outer code to recover the original file (fig-
ure 9).

Figure 10 shows the properties of a crudely weak-
ened LT code. Whereas the original LT code usually
recovers K = 10000 packets within a number of re-
ceived packets N = 11000, the weakened LT code
usually recovers 8000 packets within a received num-
ber of 9250. Better performance can be achieved by
optimizing the degree distribution.

For our excellent outer code, we require a code
that can correct erasures at a known rate of 5% with
low decoding complexity. Shokrollahi uses an irreg-
ular low-density parity-check code. For further in-
formation about irregular low-density parity-check
codes, and fast encoding algorithms for them, see
[5, pp. 567-572] and [6, 7].

7 Applications

Fountain codes are an excellent solution in a wide
variety of situations. Let’s mention two.

7.1 Storage

You wish to make a backup of a large file, but you are
aware that your magnetic tapes and hard drives are
all unreliable: catastrophic failures, in which some
stored packets are permanently lost within one de-
vice, occur at a rate of something like 10~3 per day.
How should you store your file?

A fountain code can be used to spray encoded
packets all over the place, on every storage device
available. To recover the file, whose size was K pack-
ets, one simply needs to find K’ ~ K packets from
anywhere. Corrupted packets do not matter; we sim-
ply skip over them and find more packets elsewhere.

This method of storage also has advantages in
terms of speed of file recovery. In a hard drive, it is
standard practice to store a file in successive sectors
of a hard drive, to allow rapid reading of the file; but
if, as occasionally happens, a packet is lost (owing to
the reading head being off track for a moment, giv-
ing a burst of errors that cannot be corrected by the
packet’s error-correcting code), a whole revolution of
the drive must be performed to bring back the packet
to the head for a second read. The time taken for one
revolution produces an undesirable delay in the file
system. If files were instead stored using the foun-
tain principle, with the digital drops stored in one
or more consecutive sectors on the drive, then one
would never need to endure the delay of re-reading
a packet; packet loss would become less important,
and the hard drive could consequently be operated
faster, with higher noise level, and with fewer re-
sources devoted to noisy-channel coding.

7.2 Broadcast

Imagine that ten thousand subscribers in an area
wish to receive a digital movie from a broadcaster.
The broadcaster can send the movie in packets over
a broadcast network — for example, by a wide-
bandwidth phone line, or by satellite. Imagine that
f = 0.1% of the packets are lost at each house. In a
standard approach in which the file is transmitted as
a plain sequence of packets with no encoding, each
house would have to notify the broadcaster of the f K
missing packets, and request that they be retransmit-
ted. And with ten thousand subscribers all request-
ing such retransmissions, there would be a retrans-
mission request for almost every packet. Thus the
broadcaster would have to repeat the entire broad-
cast twice in order to ensure that most subscribers
have received the whole movie, and most users would
have to wait roughly twice as long as the ideal time
before the download was complete.

If the broadcaster uses a fountain code to encode
the movie, each subscriber can recover the movie
from any K’ ~ K packets. So the broadcast needs

to last for only, say, 1.1K packets, and every house is
very likely to have successfully recovered the whole
file.

Another application is broadcasting data to cars.
Imagine that we want to send updates to in-car nav-
igation databases by satellite. There are hundreds
of thousands of vehicles, and they can only receive
data when they are out on the open road; there are
no feedback channels. A standard method for send-
ing the data is to put it in a carousel, broadcasting
the packets in a fixed periodic sequence. ‘Yes, a car
may go through a tunnel, and miss out on a few
hundred packets, but it will be able to collect those
missed packets an hour later when the carousel has
gone through a full revolution (we hope); or maybe
the following day. ..’

If instead the satellite uses a fountain code, each
car needs to receive only an amount of data equal to
the original file size (plus 5%).

References

[1] E. R. Berlekamp. Algebraic Coding Theory.
McGraw-Hill, New York, 1968.

[2] J. Byers, M. Luby, M. Mitzenmacher, and
A. Rege. A digital fountain approach to reliable
distribution of bulk data. In Proceedings of ACM
SIGCOMM 98, September 2-4, 1998, 1998.

[3] S. Lin and D. J. Costello, Jr. Error Control Cod-
ing: Fundamentals and Applications. Prentice-
Hall, Englewood Cliffs, New Jersey, 1983.

[4] M. Luby. LT codes. In Proceedings of The
48rd Annual IEEE Symposium on Foundations of
Computer Science, November 16—-19 2002, pages
271-282, 2002.

[5] D. J. C. MacKay. Information Theory, In-
ference, and Learning Algorithms. Cam-
bridge University Press, 2003. Available
from www.inference.phy.cam.ac.uk/mackay/
itila/.

[6] T. Richardson, M. A. Shokrollahi, and R. Ur-
banke. Design of capacity-approaching irregular
low-density parity check codes. IEEE Trans. on
Info. Theory, 47(2):619-637, 2001.

[7] T. Richardson and R. Urbanke. Efficient en-
coding of low-density parity-check codes. IEFEFE
Trans. on Info. Theory, 47(2):638-656, 2001.

[8] A. Shokrollahi. Raptor codes. Technical report,
Laboratoire d’algorithmique, Ecole Polytech-
nique Fédérale de Lausanne, Lausanne, Switzer-
land, 2003. Available from algo.epfl.ch/.

