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Abstract

This note explains the method used by Davey and MacKay to set the non-zero entries in
low-density parity-check codes over GF'(q), and gives explicit prescriptions.

Introduction

The outstanding codes described in (Hu et al., 2003) have revived interest in low-density parity-check
codes over GF(q) for ¢ > 2, and demonstrated that as ¢ is increased, steadily improved performance
can be achieved on a given fixed channel, as long as the progressive edge-growth method is used to
make the code.

In our work on codes over GF(q) (Davey and MacKay, 1998a; Davey and MacKay, 1998b;
Davey and MacKay, 1997; MacKay and Davey, 2000; Davey, 1999), Matthew Davey and I always
used matrices whose non-zero elements were selected not completely at random but from a special
distribution that we found empirically gave slightly improved performance. (Perhaps in the ballpark
of 0.1dB.)

Our method was simple. We assumed a particular channel model, such as a binary symmetric
channel. Then, for each distinct choice of the k non-zero entries in a row of the parity-check matrix,
we examined the marginal entropy of one element of the syndrome vector. We searched for choices
of the non-zero entries that maximized this entropy. Then the codes we created had their rows
drawn randomly from these choices.

The justification for this procedure is also simple: the greater the entropy of the syndrome, the
closer to the Shannon limit an optimal decoder can get.

Examples

As an example, here are the optimal entries, by this criterion, for a row of weight £ = 4 in a code
over GF(16). Obviously, any row may be permuted arbitrarily; also all k elements in a row may be
multiplied by any non-zero element of GF(16) to obtain an equally good row. For brevity, we omit
most of these equivalent choices and show just four.

14 5 3 1
15 5 3 1
14 11 3 1
14 11 8 1



We would choose at random from these entries, these entries multiplied by constants, and their
random permutations.

For the case of k = 5, GF(16), the following entries are optimal, or within 5 decimal places of
optimal.

145311 55531 119 731 14116 41 1310 8 61
1411311 156 531 129 731 1312 741 1510 8 61
145 391 9 7531 1311 731 1412 741 1411 8 61
14 6 591 37531 1411 731 1512741 11 9 8 71
1410 6 2 1 158531 1511 731 15121041 1311 8 71
15106 2 1 149531 1412 731 14121141 1412 8 71
14116 2 1 1310531 14111031 158 6 51 14121081
14 5 331 1413531 14121031 1411 8 51 15121081
155 331 1310631 14141131 1511 8 51 14111181
155 431 1410631 15141131 1412 8 51 14121181

1510631 1510 6 41 1512 8 51 14141181

For k =4, GF(64), we find the following rows are optimal (to within 5 decimals):

13 11 7 1
28 23 10
46 28 10
14 13 11
59 22 12
53 44 24
52 40 29
58 52 40
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For k =5, GF(64), we find the following rows are optimal (to within 5 decimals):

291605101
3111531 45301031 52373131 25211171 532719121 6258 26 19 1
6211531 55301031 52513131 50211171 534419121 38 35 98 23 1
25615531 53461331 53463931 43251171 622720121 48 38 98 23 1
2015531 45211531 59463931 58181371 513120121 56 38 35 23 1
4515531 55211531 62392751 58361371 624420121 A4 34 30 24 1
95156531 45421531 62502751 39291871 514620121 5140 31 24 1
5815531 60452031 62504451 60541871 564620121 43 36 34 25 1
6222531 60552031 62271061 60272471 443430121 62 40 29 26 1
6227531 55382131 62441061 44302471 624029131 62 55 41 26 1
6244531 59392331 45421561 60442471 625526171 50 44 35 31 1
6243931 51462631 53441961 43362571 625245171 62 52 45 34 1
30291031 56462631 59444061 60473671 393429181
5134 30 18 1 56 46 38 35 1
62 5044 35 1

Commands used

The perl program that generates these results is available in http://www. inference.phy. cam. ac.uk/macka
The program is not particularly efficient. It uses fourier transforms to compute the syndrome prob-
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ability, and walks through all possible rows, subject to the constraint that the final entry is 1, and
avoiding repetition of any permutations.

The program was used as follows to perform exhaustive searches (rather excessive, but it does
allow you to quantify how much better the best rows are).

hzFFTe.p tr=3 q=16 exhaustive=1 > tmpel6.3
hzFFTe.p tr=4 gq=16 exhaustive=1 > tmpel6.4
hzFFTe.p tr=5 gq=16 exhaustive=1 > tmpel6.5
hzFFTe.p tr=6 gq=16 exhaustive=1 > tmpel6.6
hzFFTe.p tr=7 q=16 exhaustive=1 > tmpel6.7
hzFFTe.p tr=3 gq=64 exhaustive=1 > tmpe64.3
hzFFTe.p tr=4 gq=64 exhaustive=1 > tmpe64.4

hzFFTe.p tr=5 gq=64 exhaustive=1 > tmpe64.5

tar cvf “/pub/code/perl/hz.tar tmpex

The default channel is binary symmetric with flip probability 0.1. For historical reasons, the
program reports the syndrome entropy on a scale from 0 to 2, i.e., it is the entropy per two bits.
I will make a tar file with all the output files in it and send it to you.
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