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Abstract

This note explains the method used by Davey and MacKay to set the non-zero entries in
low-density parity-check codes over GF (q), and gives explicit prescriptions.

Introduction

The outstanding codes described in (Hu et al., 2003) have revived interest in low-density parity-check
codes over GF (q) for q > 2, and demonstrated that as q is increased, steadily improved performance
can be achieved on a given fixed channel, as long as the progressive edge-growth method is used to
make the code.

In our work on codes over GF (q) (Davey and MacKay, 1998a; Davey and MacKay, 1998b;
Davey and MacKay, 1997; MacKay and Davey, 2000; Davey, 1999), Matthew Davey and I always
used matrices whose non-zero elements were selected not completely at random but from a special
distribution that we found empirically gave slightly improved performance. (Perhaps in the ballpark
of 0.1dB.)

Our method was simple. We assumed a particular channel model, such as a binary symmetric
channel. Then, for each distinct choice of the k non-zero entries in a row of the parity-check matrix,
we examined the marginal entropy of one element of the syndrome vector. We searched for choices
of the non-zero entries that maximized this entropy. Then the codes we created had their rows
drawn randomly from these choices.

The justification for this procedure is also simple: the greater the entropy of the syndrome, the
closer to the Shannon limit an optimal decoder can get.

Examples

As an example, here are the optimal entries, by this criterion, for a row of weight k = 4 in a code
over GF (16). Obviously, any row may be permuted arbitrarily; also all k elements in a row may be
multiplied by any non-zero element of GF (16) to obtain an equally good row. For brevity, we omit
most of these equivalent choices and show just four.

14 5 3 1
15 5 3 1
14 11 3 1
14 11 8 1
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We would choose at random from these entries, these entries multiplied by constants, and their
random permutations.

For the case of k = 5, GF (16), the following entries are optimal, or within 5 decimal places of
optimal.

14 5 3 1 1
14 11 3 1 1
14 5 3 2 1
14 6 5 2 1
14 10 6 2 1
15 10 6 2 1
14 11 6 2 1
14 5 3 3 1
15 5 3 3 1
15 5 4 3 1

15 5 5 3 1
15 6 5 3 1
9 7 5 3 1
13 7 5 3 1
15 8 5 3 1
14 9 5 3 1
13 10 5 3 1
14 13 5 3 1
13 10 6 3 1
14 10 6 3 1
15 10 6 3 1

11 9 7 3 1
12 9 7 3 1
13 11 7 3 1
14 11 7 3 1
15 11 7 3 1
14 12 7 3 1
14 11 10 3 1
14 12 10 3 1
14 14 11 3 1
15 14 11 3 1
15 10 6 4 1

14 11 6 4 1
13 12 7 4 1
14 12 7 4 1
15 12 7 4 1
15 12 10 4 1
14 12 11 4 1
15 8 6 5 1
14 11 8 5 1
15 11 8 5 1
14 12 8 5 1
15 12 8 5 1

13 10 8 6 1
15 10 8 6 1
14 11 8 6 1
11 9 8 7 1
13 11 8 7 1
14 12 8 7 1
14 12 10 8 1
15 12 10 8 1
14 11 11 8 1
14 12 11 8 1
14 14 11 8 1

For k = 4, GF (64), we find the following rows are optimal (to within 5 decimals):

13 11 7 1
28 23 10 1
46 28 10 1
14 13 11 1
59 22 12 1
53 44 24 1
52 40 29 1
58 52 40 1

For k = 5, GF (64), we find the following rows are optimal (to within 5 decimals):

31 11 5 3 1
62 11 5 3 1
25 15 5 3 1
29 15 5 3 1
45 15 5 3 1
55 15 5 3 1
58 15 5 3 1
62 22 5 3 1
62 27 5 3 1
62 44 5 3 1
62 43 9 3 1
30 29 10 3 1

45 30 10 3 1
55 30 10 3 1
53 46 13 3 1
45 21 15 3 1
55 21 15 3 1
45 42 15 3 1
60 45 20 3 1
60 55 20 3 1
55 38 21 3 1
59 39 23 3 1
51 46 26 3 1
56 46 26 3 1

52 37 31 3 1
52 51 31 3 1
53 46 39 3 1
59 46 39 3 1
62 39 27 5 1
62 50 27 5 1
62 50 44 5 1
62 27 10 6 1
62 44 10 6 1
45 42 15 6 1
53 44 19 6 1
59 44 40 6 1

25 21 11 7 1
50 21 11 7 1
43 25 11 7 1
58 18 13 7 1
58 36 13 7 1
39 29 18 7 1
60 54 18 7 1
60 27 24 7 1
44 30 24 7 1
60 44 24 7 1
43 36 25 7 1
60 47 36 7 1

34 30 27 9 1
53 27 19 12 1
53 44 19 12 1
62 27 20 12 1
51 31 20 12 1
62 44 20 12 1
51 46 20 12 1
56 46 20 12 1
44 34 30 12 1
62 40 29 13 1
62 55 26 17 1
62 52 45 17 1
39 34 29 18 1
54 34 30 18 1

48 28 23 19 1
62 29 26 19 1
62 58 26 19 1
38 35 28 23 1
48 38 28 23 1
56 38 35 23 1
44 34 30 24 1
51 40 31 24 1
43 36 34 25 1
62 40 29 26 1
62 55 41 26 1
50 44 35 31 1
62 52 45 34 1
56 46 38 35 1
62 50 44 35 1

Commands used

The perl program that generates these results is available in http://www.inference.phy.cam.ac.uk/mackay/code/perl/hzFFTe.p.
The program is not particularly efficient. It uses fourier transforms to compute the syndrome prob-
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ability, and walks through all possible rows, subject to the constraint that the final entry is 1, and
avoiding repetition of any permutations.

The program was used as follows to perform exhaustive searches (rather excessive, but it does
allow you to quantify how much better the best rows are).

hzFFTe.p tr=3 q=16 exhaustive=1 > tmpe16.3

hzFFTe.p tr=4 q=16 exhaustive=1 > tmpe16.4

hzFFTe.p tr=5 q=16 exhaustive=1 > tmpe16.5

hzFFTe.p tr=6 q=16 exhaustive=1 > tmpe16.6

hzFFTe.p tr=7 q=16 exhaustive=1 > tmpe16.7

hzFFTe.p tr=3 q=64 exhaustive=1 > tmpe64.3

hzFFTe.p tr=4 q=64 exhaustive=1 > tmpe64.4

hzFFTe.p tr=5 q=64 exhaustive=1 > tmpe64.5

tar cvf ~/pub/code/perl/hz.tar tmpe*

The default channel is binary symmetric with flip probability 0.1. For historical reasons, the
program reports the syndrome entropy on a scale from 0 to 2, i.e., it is the entropy per two bits.

I will make a tar file with all the output files in it and send it to you.
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