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Abstract

Gallager codes with large block length and low rate (e.g., N '

10, 000–40, 000, R ' 0.25–0.5) have been shown to have record-
breaking performance for low signal-to-noise applications. Gallager
codes with high rates (R ' 0.8–0.94) are also excellent, outperform-
ing comparable BCH and Reed-Solomon codes, even at short block-
length (N ' 2, 000–4, 000) (MacKay and Davey, 2000).

This paper looks in more detail at high-rate Gallager codes, ad-
dressing the following issues. First, we recap the performance im-
provement obtained by switching from a Reed-Solomon code to a
comparable Gallager code. Second, we investigate the benefit of in-
creasing the blocklength of the Gallager code, and investigate the
variability in performance among randomly-created codes. Third,
we show the benefit of reducing the rate of the code, i.e., increasing
its redundancy. Fourth, we describe modifications to the code that
are appropriate if there are many parallel channels that contaminate
each other with crosstalk, as might be the case in an optical channel
and quantify the benefits of these changes.

1 Introduction

A regular Gallager code (Gallager, 1962) has a parity check matrix with
uniform column weight j and uniform row weight k, both of which are very
small compared to the blocklength. If the code has transmitted blocklength
N and rate R then the parity check matrix H has N columns and M rows,
where M ≥ N(1−R). [Normally parity check matrices have M = N(1−R),
but the matrices we construct may have a few redundant rows so that their
rate could be a little higher than 1 − M/N .]

[The ‘overhead’ of a code is given by (1 − R)/R.]

Rate Overhead

0.5 100%

0.8 25%

0.85 18%

0.94 6.4%

In (MacKay and Davey, 2000), we explored whether Gallager codes
were useful for high rates (R > 2/3) and small block lengths (N < 5000),
and showed that they could outperform Reed-Solomon codes. The present
paper continues from that work.
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2 Comparison with Reed-Solomon codes and

BCH codes

We recap a result from (MacKay and Davey, 2000), comparing the perfor-
mance of a rate-239/255 Reed-Solomon code with a Gallager code. The
blocklength of the Reed-Solomon code is N = 2040. The Gallager code
has N = 4376, Mapparent = 282, j = 4, and Mtrue = 281. (Rate 0.936, c.f.
239/255 = 0.937.) It was created using David MacKay’s code5 program
to generate a parity-check matrix with almost no 4-cycles, then pruning
appropriate columns from the parity-check matrix to remove all 4-cycles.
Empirical results are based on 18,650,000 simulated block decodings. Error
bars are shown. No undetected errors occurred.

The comparison is rather unfair on the Reed-Solomon code for the fol-
lowing reasons.

1. Our comparison is on a Gaussian-additive-noise channel, but the stan-
dard Reed-Solomon code’s decoder cannot make use of soft channel
outputs. The Gallager code’s decoder makes excellent use of the soft
outputs.

2. The Reed-Solomon code is designed to handle bursty noise. The
channel simulated here has no bursts.

[Even if we remove these unfairnesses, Gallager codes can still beat Reed-
Solomon codes, as we showed in (MacKay and Davey, 2000), where we
simulated Gallager codes over GF(16) with a simple bursty channel model.]

Figure 1 shows the block error probabilities of the two codes, and of
two BCH codes with similar rate.

Gallager codes beat Reed-Solomon codes and BCH codes because they
not only have good distance properties, they also have a soft decoding al-
gorithm that can (almost always) correct errors at noise levels greater than
those that would be tolerated by any bounded-distance decoder. Reed-
Solomon codes and BCH codes only have bounded-distance decoders, for
practical purposes.

3 Blocklength

We now investigate the effect of increasing blocklength. Figure 2 shows the
block error probabilities of three additional codes, all of essentially identical
rate, but having blocklength N = 10, 000. A win of about 0.5 dB can be
seen at a block error rate of 10−6. At smaller block error rates, the gap
appears to widen.

The three codes were created at random using code5 to make a matrix
with N = 10, 002 columns, following by pruning of one or two columns.
The right hand panel of figure 2 illustrates the variability of performance
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Figure 1: Block error rates of a Gallager code, a Reed-Solomon code, and
two BCH codes. [Bit error rates will not be shown in the remaining figures.
They are always about a factor of 100 lower than the block error rate.]
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Figure 2: Block error rates as a function of blocklength. The right hand
figure shows detail from the left. The codes have parameters (a) j = 4,
K = 9375, N = 10001; (b,c) j = 4, K = 9374, N = 10000.
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Figure 3: Block error rates as a function of rate. This figure has a different
horizontal axis from the preceding figures.
The codes with rate 0.85 have a performance that is beyond the Shannon
limit for codes of rate 0.936.
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among randomly created codes – much less than 0.1dB, for codes of this
size.

4 Choice of Rate

A well-known prediction of Shannon theory is that one can achieve bet-
ter communication over a Gaussian channel by transmitting at a lower

code rate and with consequently worse signal-to-noise ratio. I believe this
recommendation is generally avoided in the communications world either
for practical reasons such as bandwidth limitations, or because of tradi-
tion. When we are considering changing the coding paradigm, I think it
is important to consider changing the code rate. If one of the reasons for
choosing a rate of 0.94 was because that is a rate that is convenient for
Reed-Solomon codes, then this constraint on rate is one that we can now
ignore!

To illustrate the potential benefit of a reduction in the code rate, figure 3
shows the performance of two randomly-created Gallager codes with rate
0.85. (This is still quite a high rate, by my standards!) The code parameters
are N = 32, 000 and M ' 4, 800, with column weights j = 3 and j = 4
respectively.

Decreasing the rate from 0.936 to 0.85 delivers a 1.3dB gain on the
Gaussian channel.

These gains continue as one reduces the rate to 0.5 or 0.25.
The parity check matrix of this code, 4376.282.4.9598, can be found

in the online archive (MacKay, 1999).

Decoding times.

Figure 4 shows the cumulative distribution of decoding times for the code
s2.94.594 at three noise levels. The decoding usually halts in fewer than
ten iterations. Under good conditions three iterations usually suffice.

The number of arithmetical operations per iteration is about four times
the number of 1s in the parity check matrix. That makes 16 operations per
iteration per transmitted bit, or 32000 operations per iteration if N = 2000.

5 Codes for parallel channels with crosstalk

Finally, we describe an evaluation of the benefits of incorporating knowl-
edge about crosstalk into the code design.

As part of Edward Ratzer’s PhD, various channels with crosstalk have
been studied. The studied model that most closely resembles a wave-
division multiplexed (WDM) fibre channel is the parallel Z channel; a
sub-channel is shown in figure 5. The noise level in each sub-channel is
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Figure 4: Regular Gallager code with rate R = 8/9 and N = 1998. (a)
Dependence of block error rate on signal to noise ratio. Weight per col-
umn t = 4 and transmitted blocklength N = 1998. Vertical axis: block
error rate. Horizontal axis: Eb/N0 (decibels). Also shown are performance
curves for Reed-Solomon, Reed-Muller and BCH codes with similar rate.
(b) Decoding times, cumulative distribution. Horizontal axis: number of
iterations of the sum-product algorithm. (c) Detail from (b).
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Figure 5: Model of parallel channels with crosstalk. The noise level of each
sub-channel is proportional to the number of ones transmitted, o, on the
other sub-channels. The constant of proportionality is called a.
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Figure 6: Comparison of five coding strategies for the parallel channels with
crosstalk. The codes are all rate 0.3 and blocksize 10000 and the number
of parallel sub-channels is 128. The horizontal axis is the noise parameter
a defined in figure 5.

proportional to the number of 1s, o, being transmitted on the other chan-
nels at the time. If each channel is treated independentally and identically,
capacity calculations suggest that a coding solution in which 1s and 0s are
not equally likely to be transmitted will lead to better performance.

Simulations were carried out with standard LDPC codes compared to
codes with sparse bits (i.e., bits where 1s are less common than 0s) and
the results are shown in figure 6. A range of schemes that improve the
performance are shown. First, a simple time-sharing scheme, whereby some
of the transmitters sit idle for short time shows a small improvement. A
further improvement, called a Sparse-Dense code, involves fixing the user
data bits to be sparse, but still using a traditional systematic LDPC code.
Much larger gains are delivered by a scheme that modifies the LDPC code
so that all the bits transmitted are sparse, a Sparse LDPC Code.

Sparse-Dense codes show a similar level of complexity to LDPC codes.
For the further gain to Sparse LDPC Codes a higher level of decoding
complexity is involved.

These simulations are based on an ad hoc channel model of crosstalk –
results of tests on real fibre systems are needed to be able to say what sort
of gain will be seen on real channels.
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6 Conclusion

We have illustrated gains of several decibels as follows:

Comparison Gain / dB

Switching from Reed-Solomon to Gallager codes 2.0
Increasing blocklength from 4,000 to 10,000 0.5
Reducing code rate (i.e., increasing redundancy) 1.3
Sparsification, assuming crosstalk 1.2

Further ideas that may be worth investigating include:

1. Making use of the Gallager code’s ability to detect its decoding fail-
ures to invoke a retransmission of each lost block. (This approach
relies on the fact that the Gallager code can detect essentially all its
errors, a property not shared by all codes.) Retransmissions offer a
cheap and simple way to get the error probability down from 10−5 to
10−20 with very small increase in overhead. This approach also allows
more corners to be cut in the decoding of the Gallager code, since
a small increase in the number of undecoded blocks would no longer
matter. This suggestion’s only cost is a decoding latency, and obvi-
ously the requirement for a back-channel over which retransmissions
are requested.

2. If retransmissions are not possible, an alternative approach is to con-
catenate the Gallager code with an outer erasure-correcting code such
as a Digital Fountain (Byers et al., 1998). The digital fountain adds
negligible computational cost, a small increase in overhead, and a
significant decoding latency (of order 1,000–10,000 blocks).

3. Making the Gallager code irregular, and/or introducing state vari-
ables into its graph. At long block lengths these modifications can
give improvements of 1 or 2 dB (Richardson et al., 2001; MacKay
et al., 1999; Davey and MacKay, 1998).

4. Using low-precision decoders. As an example, ‘Gallager’s decoding al-
gorithm B’ is a decoder that passes single bits in place of real numbers.
The loss in performance for this decoder is about 2 dB. Intermediate
precision algorithms (using say three or five levels for all messages)
suffer a much smaller loss (Richardson and Urbanke, 2001).
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