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ABSTRACT. Probabilistic models for images are analysed quantitatively using Bayesian hypothesis
comparison on a set of image data sets. One motivation for this study is to produce models which
can be used as better priors in image reconstruction problems.

The types of model vary from the simplest, where spatial correlations in the image are irrelevant,
to more complicated ones based on a radial power law for the standard deviations of the coefficients
produced by Fourier or Wavelet Transforms. In our experiments the Fourier model is the most
successful, as its evidence is conclusively the highest. This ties in with the statistical scaling self-
similarity (fractal property) of many images. We discuss the invariances of the models, and make
suggestions for further investigations.

1 Introduction

This paper’s aim is to devise and search for ‘good’ statistical descriptions of images, which
are greyscale pictures digitized from a camera, stored as an array of integers (representing
the intensities of light falling on the camera’s sensitive array). All of the images analysed in
this paper have a fixed number of greyscale levels, A = 256, corresponding to quantization
to eight bits (one byte) of information per pixel. We assume that the image data is a linear
function of physical intensity, and free of noise and blurring.

The statistical properties considered in the project are so general that what the images
depict is largely unimportant, and we chose easily recognisable pictures (figure 1) such a
face, natural objects, astronomical images, and the kind of images our eyes are subjected
to frequently.

The development of the models is driven by intuitive ideas and by observations of real
images, and is regulated by certain criteria for invariance, that is, operations on the image
which should not affect its likelihood.

Bayesian analysis allows quantitative manipulation of data and prior beliefs to give a
numerical result, the evidence, which reflects the probability of a hypothesis, and therefore
how ‘good’ a model is.

Each model comprises a hypothesis H, with some free parameters denoted by the vec-
tor w = (a, 8, ...), which assigns a probability density p(f|w, H), the likelihood, over the
image space of f, normalized so as to integrate to unity. The density’s units are that of
[intensity] ™", since each pixel component f; has units of [intensity].

In most models the free parameters are initially unknown (i.e. they are assigned very
wide prior distributions), and we search for their best fit value wgp, which has the largest
likelihood given the image. Bayes’ Theorem gives

p(f|W,H)

POVIE ) = e

p(w|H) (1)
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Figure 1: The images analysed

This shows each image data set f; as an intensity array of n, by n, pixels (n, and n, being either
128 or 256 in these images).

The denominator is independent of w, the numerator is the likelithood, i.e. the probability of
the observed image f as a function of w, and the final term p(w|H) is the prior distribution
on the the free parameters. This prior has to be assigned (based on our beliefs about
images), even if seemingly arbitrarily, but has negligible effect on the wgy found because
the likelihood dominates. We know that p(w|f, H) is normalized to 1, giving an expression
for the denominator of (1), which we now call the evidence for H:

pUE1H) = [ p(Elw, H)p(w|H)dw (2)

This evidence is often dominated by the value of p(f|wgg, H) (the best fit likelihood). The
evidence is equal to the best fit likelihood multiplied by a smaller factor known as the
“Occam Factor”. Applying Bayes’ Theorem again gives us the probability of H (to within
a constant factor) as p(H|f) o p(f|H)p(H). The prior p(H) can incorporate our beliefs
about the validity of each hypothesis before the data arrived, but we chose all p(H;) as equal
(in fact, usually any such prior would have to be very extreme to outweigh the evidence).

So, we now have the relative plausibilities of competing hypotheses, and in this paper
we evaluate p(f|H;) for given images and a variety of H;.

2 Description of Models

We now detail the models (roughly in order of increasing complexity), the first four of which
assume independence of the pixels f;, meaning

p(fo, f1y o fno1) = Hp(fz‘) . (3)
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Figure 2: Some image intensity histograms, and a free-form distribution using B “bins”

Ranpom Birs MobkeL (RB)

The simplest distribution we can assign is uniform across all the allowed values of all n
pixels, so p(f|H) = constant within the n-dimensional hypercube from 0 to f,,.; on each
axis, and zero elsewhere. Our integer data f; is assumed to have been truncated from a real
continuous variable in the range 0 to fiaz (fmaz being A units of intensity), so although
our image vector fis always quantized onto an integer lattice, we will deal with continuous
density functions. This model is called “random bits” because it corresponds to a prior of
exactly % for the probability of each binary bit being set in the stored image. Written in
log form, the evidence is

log p(f|HrB) = Zlog (1/A) = —nlogA. (4)

FrREE-ForM DisTRIBUTION MODEL (FF)

Figure 2 shows the frequency of occurrence of each intensity level in some images. It is
clear that the distributions are far from flat, and are inconsistent from image to image,
depending on properties of the camera and the digitization process. Therefore a model
with a flexible, parametrized probability distribution function y(f) over intensity f would
be able to fit real images better than one with a uniform distribution. The figure also shows
a simple y(f) with a finite number (B) of variables, namely {ys} = {v1, 2, ...ys}, which
give the probabilities of f falling into each “bin” of width 1/K. This probability is applied
independently to each f; of the image, so that

p(E{w}, H) = K" [ w™ (5)
b

where Ny is the number of pixels with intensity falling into bin b. This is substituted in (2)
using {y;} as the parameter vector w, and with a flat prior over all the normalized {y;}
(but zero if not normalized, as used by Gregory and Loredo (1992)).

Approximating Gamma functions using logs eventually gives,

. log(Ny + 1) 1 1 (n + B)
| f|lH =nlog K Npy4+1)—=—— 2~ — | = log(N, 1) — =1 .
ogp(f|Hpr) = nlog +zb:( s+ 1) T B 225: og(Ny + 1) 5log { =5




The first two terms are the best fit likelihood, and the last term (in square brackets) is the
log Occam factor. In order to disregard the statistical and digitization fluctuations in the
histogram, but retain some flexibility, we have chosen B = 16 for this analysis (B must be
between 1 and A). A Bayesian choice of B might also be made.

GaussiaAN DisTriBUTION MoDEL (GD)

This model applies the Gaussian probability distribution N (u,o?) to each f;, and is the
first of a general class (that we’ll call G) of Gaussian models which use the likelihood

p(Elw, H) = e 3E-7C-w) (6

where w controls some properties of the square (order n) matrix C and the mean vector a,
and Z a normalizing constant. This gives for G models the evidence

logp(flw, H) = —%(f —a)l'C(f — a) 4 = [log(det C) — nlog(27)] . (7)

1
2
In this model, GD, the values p and o are constant for all pixels (this is not only simplest, but
desirable for invariance under spatial transformations), giving C = I/o? and a = (u, g, ...pt).

The parameter w is (i, o), and solving V log p(f|w, H) = 0 gives the best fit values:

KUBF = %Zfz ; OBy = lz:(fi—uBF)2 : (8)

n =
7

The approximation (usually a very good one, which we will use in all our G models — e.g.
see Figure 4) that the peak about these best fit values is Gaussian makes equation 2 easy
to evaluate. We assume

p(flw, H) = pppe sV AV (9)
with ppr = p(flwpp, H), and A its Hessian matrix at wgp. Substituting (9) into (2) and
assuming a constant prior p(w|H )pp near the peak gives the general G model evidence

1 A
logp(f|H) = log per — §log <det §> +logp(w|H)Br (10)

We assigned a Gaussian prior on the logarithm! of each component, log w;, of standard
deviation ojog., about the best fit value log wB!". For this model, normalizing p(w|H) gave
the prior at best fit

p(W|H)BF = ( 27 WBF Ologu OBF Ologo ) - (11)

Substituting the best fit values, the Hessian A and this prior into (10) enabled us to
calculate this model’s evidence p(f|Hgp). Based on the largest and smallest conceivable
p and o (given integer f; from 0 to fy4z), We set both the standard deviations 1o, and
Ologo t0 4 (a value we used in all the G models). However, in our results the prior, and
indeed the whole Occam Factor, is almost completely negligible compared to the relative
likelihoods of different hypotheses, so we will not devote so much rigor to assigning priors in
the coming models. (One would need to constrain O(n) free parameters before this became
significant.)

Although GD fits most images less well than the FF model, the above G class includes
new, more powerful models (FP and WP), where pixels are no longer independent.

'This is appropriate since we initially have an uncertainty on w of orders of magnitude.
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Figure 3: The 2D Fourier power spectrum |F;|? of ‘susie’

On the left it is displayed as a 2D histogram-equalized image (with k = 0 central, and &, and k&, in
the range [—m, +7] ), and on the right as a scatter plot of log |F(k)|? against log |k]|.

GAussiaN DisTRIBUTION OF log f; MopeL (LGD)

In many classes of images, notably astronomical, there are a very large number of low-
intensity pixels and fewer at higher intensities, and a Gaussian distribution on f; is clearly
inappropriate. However, if we define a new image g; = log(f; +s), where s is some constant
offset (to keep g; finite in the case of f; = 0; we chose s as half an intensity unit), then
N(ug,ag) in g;-space corresponds to a suitably biased smooth distribution in f;-space,
which also has the desirable property of enforcing positivity of the intensities.

To transform probability densities we use p(f) = det(J)p(g), the determinant of .J the
Jacobean being det(J) = [[;(fi +s)™! = e™™9BF 50 we can use all the previous GD theory
on g; to assign log p(g|Hep) then add on log(detJ), to get the log evidence log p(f|Hrcp).

FouriER SPECTRUM RaDIAL PowEr Law MobpEeL (FP)
So far none of the models have cared about spatial correlationsin an image, which are after
all usually what makes them recognisable. However, the 2D Discrete Fourier Transform
(from f; to the complex array F'(k), k = (ky, ky) ) allows us to construct a hypothesis with
correlation (i.e. a non-diagonal C), within the general scheme of the G class.
Visual examination of the 2D power spectrum of a typical image shows three main
features (Figure 3):

1. seemingly uncorrelated random speckle on the scale of one pixel,
2. an approximately radially symmetric upward trend towards the point k = 0, and

3. brighter lines on or near the vertical and horizontal axes (these are artifacts caused by
the non-periodicity of the image, and were found to have little effect on the evidence
when removed).

The observation of radial symmetry motivated a log-log plot of the spectrum as a function
of radius in k-space, which shows a clear linear downward trend of mean log power with
log radius. This, together with the uncorrelated nature of the speckle, led to a hypothesis
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Figure 5: An artificial image, its 2D W'T image, and a slice through a wavelet

Notice the structure of the WT: it is divided into rectangular regions of every possible binary (2!
by 27) size, each of which contains a map of the original image.

that the Fourier coeflicients have real and imaginary parts which are both independently
distributed like N(0,v/20(k) = ck™™) where ¢ and m are the power law constants and
k = |k|. We assigned 0(0) = \/nfiqz to avoid an infinity. This Gaussian distribution for
the coefficients I’ was found to be very well justified when we histogrammed Re[F] and
Im[F] for real images. Expressed as a density in F-space, equation (7) becomes

E? n
logp(F|m,c, H) = — Z |20|2 - Zlog o; — 5108;(27) ) (12)

and the orthogonality of the FT (det(J) = 1) means this is equal to log p(f|m, ¢, H), and
from this the evidence p(f|Hpp) was found in a similar way to the GD model.

There was no simple analytic solution for mpgr and cgp, so a Newton-Rapheson iterative
approach was used to find wgp and the Hessian A in the 2D space w = (m, ¢) . Figure 4
confirms that log p(F|m, ¢, H) has a Gaussian peak about wgp.

WAVELET TRANSFORM PowEkr Law MobpeL (WP)

The Wavelet Transform (WT) is linear, orthogonal, and operates on a real vector f (of n
components, an integer power of two), converting it to another real vector F of n compo-
nents. For a good, practical introduction see (Press et al. 1993:section 13.10), or (Strang



Figure 6: Typical sample images from models’ f-space distributions

On the left is a sample from any of the RB, FF, GD or LGD models, which is spatially uncorrelated.
On the right is a sample from the FP model, with m = 1.5 and ¢ = 10, showing structure at all
length scales (in fact it is a fractal).

1989) and (Heil and Walnut 1989) for more background. Wavelets have the property of
being localized in both real and frequency space, so can efficiently represent both dis-
continuities and periodic features (see figure 5). They have many applications in lossy
image-compression techniques, because they often reduce images to a few large coeflicients
and many small ones®. In this final model (also in the G class) we used the 4-coefficient
Daubechies WT to replace the FT from the previous model, assigning Gaussian distribu-
tions to the W' coeflicients F; but with o; uniform within each of the ‘binary regions’
evident in figure 5. For each region an approximate k; was used, based on the minimum
wavelet dimension (in x or y), and the power law o; = ck; ™ was used as before. Skipping
over details, this allowed equation (12) to be used to compute the evidence p(f|Hwp) in an
identical way to the FP model.

3 Results

Table 1 presents some of the results for different images, with e; short for the log evidence
of model i. For easy comparison, the uncorrelated models FF, GD and LGD are shown as
ratios to the standard RB model (so that a number greater than 1 implies more evidence
than for RB). Similarly, the ratios Rp and Ry are defined as Z(;—g and :5{/1; respectively,
since the FP and WP models are closest in form to GD (of the uncorrelated models). So R
gives us a guide to how much improvement® has been obtained by introducing correlation.

Note that the evidences are extremely small numbers, and that small differences in R values
10000

correspond to huge factors of relative evidence, of the order of e in our case, so that
one hypothesis is overwhelmingly the most likely for a given image. The table also gives
the best fit power law gradients mp for FP and my for WP.

Three random computer-generated images were first analysed: ‘A’, with independent
pixels with a flat distribution from 0 to f.. (= A = 256); ‘B’, likewise but with a Gaussian

distribution of ¢ = 20; and ‘C’, with a correlated power law distribution of m = 1.5 and

?Later we show that this is exactly the criterion required in a good model.

3Note that, because of the units of f; chosen, e; is equal to the optimum message length in nats needed
for lossless communication of image f (to a precision of one intensity unit) using an encoding based on the
hypothesis H;. Thus R is the information compression ratio.



image ng erB | erB/err | €rB/ecp | erB/erep || Re | mp || Rw | mw
uncorrelated models correlated models

A 256 || -363409 | 1.003 0.969 0.931 1.000 | -0.001 || 0.999 | -0.001
B 256 || -363409 | 1.248 1.255 1.249 1.001 | -0.002 || 1.000 | -0.004
C 256 || -363409 | 1.202 1.204 1.189 1.796 | 1.488 1.635 | 1.453
susie 128 -90852 | 1.078 1.040 1.025 1.431 | 1.577 1.319 | 1.316
mouse 256 || -363409 | 1.113 0.996 1.046 2.082 | 1.572 1.877 | 1.617
redspot 256 || -363409 | 1.084 1.079 1.054 1.320 | 1.088 1.287 | 1.162
trees 128 -90852 | 1.044 0.985 0.949 1.026 | 0.350 1.027 | 0.420
sky 128 -90852 | 1.184 1.095 1.107 1.256 | 0.717 1.275 | 0.813
parrot 128 -90852 | 1.056 1.044 1.012 1.260 | 1.544 1.189 | 1.323
m100cen | 128 -90852 | 1.163 1.113 1.094 1.261 | 0.858 1.240 | 0.900
ngcl068 | 128 -90852 | 1.158 1.033 1.137 1.549 | 1.215 1.490 | 1.269

Table 1: Log evidence results for simulated and real images

¢ = 10. So A,B and C are typical samples from the RB, GD and FP model distributions
respectively (see Figure 6). These test images behaved as expected: for A and B we find
Rrw ~ 1 (since they are uncorrelated), whereas for C, Ry ~ 1.8 so the FP model shows a
vastly higher evidence, and a best fit m close to the predicted value. For B, evidence gains
in the uncorrelated models over RB are due to a better fitting of the narrower intensity
range.

Analysis of the eight real images gave the general results:

e Correlated models are vastly more successful than uncorrelated, with FP consistently

ahead of WP.
e Rpw tend to be larger the higher the best fit gradient m is.
e myp and my loosely match for a given image.

e Of the uncorrelated models, FF invariably has the most evidence (although not always
by a large margin), and RB usually the least.

e LGD has no convincing advantage over GD for the last two (astronomical) images.

4 Discussion

To understand the increase in R with m, we consider a general (G class) model where
distributions N (u;,0?) are applied to the coefficients F; produced by some orthogonal
linear transform on the image f; (FP and WP are special cases of this). Making the
crude assumption that the F; are distributed in this way implies that maximizing pgp
(and therefore the evidence) is equivalent to minimizing [[o; (under the orthogonality
constraint Y o? = constant). This can best be achieved by having only a few large o; and
many small o;, i.e. choosing a transform which concentrates the image ‘power’ 3" f? into
as few coeflicients as possible, and a higher m does this better than a low one in the FP or

WP model.



It is interesting to realise how the power law found in many of our images relates to
a fractal property. Based on Mandelbrot’s (1982) statement (p. 254) in the 1D case, we
derived that for an image sampled in N dimensions which obeys a statistical scaling law
f(x) ~ b~ f(hx) then one would expect the power spectrum <|F(k)|*> o k™2™ (in the
case of directional isotropy), with the relation @ = m — N/2. For this case, N =2 and m
is that of the FP model, mp. This power law spectrum is surprisingly common in much
of nature, for instance the rough fracture surfaces of metals (Barnett 1993), which initially
led us to investigate the FP model.

Also worthy of discussion are the invariances that were considered in regulating the
choice of models for this investigation. If a model had a likelihood function invariant under
translation, rotation and scaling of the image, then it could not induce unnatural preferences
for particular positions, angular directions or length scales when used as a prior in image
reconstruction (or other such inverse problems). Apart from the axes-dependent behavior of
the wavelets in the WP model, all the models in this paper share this invariance. However,
models where correlation is introduced via a Gaussian ICF (intercorrelation function), for
instance, are not scale-invariant and will be prone to favour length scales similar to the
ICF radius. We believe that our FP model can be expressed in terms of an ICF, which will
however have an asymptotic, power law form.

There are a huge number of directions for further investigation into models for images,
but among the more fruitful we suggest:

1. Develop new models that incorporate positivity, since we are dealing with physical in-
tensities which cannot be negative.

2. Search for new formulations of what ‘correlation’ is, and what makes images recognis-
able. Borrow ideas from good image compression techniques, as these rely on identifying
correlations.

3. Investigate Gabor functions (Gabor 1946), which are forms of wavelets, and which, as
Daugman (1985) discusses, seem to match the receptive fields of neurons in the primary
visual cortex. We suggest that, since evolution has optimized so many biological design
problems, the workings of our own perceptual system should be studied and mimicked to
find good image processing and modelling techniques. It is, after all, our own perception
that tells our consciousness that we are looking at a recognisable image.

5 Conclusion

A framework of simple models for images has been built up, and their Bayesian evidence
has been evaluated for a set of image data. The results show a conclusively massive increase
in evidence for correlated models (FP and WP) over uncorrelated (RB, FF, GD and LGD),
with the FP model almost always the most successful, especially at higher mp. This reflects
a power law dependence of Fourier components apparent in images and implies a statistical
scaling self-similarity, that is, a general fractal property.
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