Relationships between Sparse Graph Codes

David J.C. MacKay *

Abstract: The best error-correcting codes that are known at present are irregular Gallager
codes. Finding the best way to construct the parity check matrix of these codes is still
an active research area. This note reviews some of the issues, and uses the notation of
generalized parity check matrices to relate irregular Gallager codes to turbo codes, repeat-
accumulate codes, and the MN codes used by Kanter and Saad.

Nine research questions are posed.

1 Introduction

The central problem of communication theory is to
construct an encoding and a decoding system that make
it possible to communicate reliably over a noisy chan-
nel. The encoding system uses the source data to se-
lect a codeword from a set of codewords. The decoding
algorithm ideally infers, given the output of the chan-
nel, which codeword in the code is the most likely to
have been transmitted; for an appropriate definition of
distance, this is the ‘closest’ codeword to the received
signal. A good code is one in which the codewords are
well spaced apart, so that codewords are unlikely to be
confused.

Designing a good and practical error correcting code
is difficult because (a) it is hard to find an explicit set of
well-spaced codewords; and (b) for a generic code, de-
coding, i.e., finding the closest codeword to a received
signal, is intractable.

However, a simple method for designing good codes,
first pioneered by Gallager [1], has recently been re-
discovered [2] and generalized. These codes are de-
fined in terms of sparse random graphs. Because the
graphs are constructed randomly, the codes are likely
to have well-spaced codewords. And because the codes’
constraints are defined by a sparse graph, the decod-
ing problem can be solved — almost optimally — by
message-passing on the graph. The practical perfor-
mance of Gallager’s codes and their modern cousins
[3, 4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16] is vastly
better than the performance of the codes with which
textbooks have been filled in the intervening years.

2 Sparse Graph Codes

In a sparse graph code, the nodes in the graph rep-
resent the transmitted bits and the constraints they
satisfy. For a linear code with a codeword length N

*Department of Physics, University of Cambridge, Cavendish
Laboratory, Madingley Road, Cambridge, CB3 OHE, United
Kingdom. mackay@mrao.cam.ac.uk

&3]
(a) Gallager code

(b) Repeat-accumulate code

L

|
(c1) Turbo code

| > D > 4(0)

|
#4 (D] 23 (D] #2 (D] 21 (D] 20
| | | L (a)
— 4 1 t
E—P—— @L s
(21/37)s recursive convolutional
code

(c2)

Figure 1. Graphs of three sparse graph codes.

(a) A rate 1/4 low—density parity—check code (Gal-
lager code) with blocklength N = 16, and M = 12 con-
straints. Each white circle represents a transmitted bit.
Each bit participates in j = 3 constraints, represented
by squares. Each constraint forces the sum of
the k£ = 4 bits to which it is connected to be even.

(b) A repeat-accumulate code with rate 1/3. Each
white circle represents a transmitted bit. Each black
circle represents an intermediate binary variable. Each
[=] constraint forces the variables to which it is con-
nected to be equal.

(c) A turbo code with rate 1/3. (c1) The circles rep-
resent the codeword bits. The two rectangles represent
rate 1/2 convolutional codes (c2), with the systematic
bits {t*)} occupying the left half of the rectangle and
the parity bits {t*)} occupying the right half.

0.1 :

0.01 ¢ Reg |

GF(2)

0.001 ¢]

0.0001 ¢]

1e-05]

1e-06 | ? Irreg GF(S? | B

02 0 02 04 06 08

Eb/No (dB)
(a)
1 T : . ‘
total
undetected ---*---

0.1]
0.01]
0.001]
0.0001]

1e-05 ; é :; ‘; é

N=30000 N=9999 N=3000
(b)

Figure 2. (a) Bit error probabilities for communication over
a Gaussian channel at rate 1/4: left-right: Irregular
LDPC, GF(8), transmitted blocklength 24000 bits; JPL
turbo, N = 65536 bits (dotted line); Regular LDPC,
GF(16), N = 24448 bits; Irregular LDPC, GF(2), N =
64000 bits; Regular LDPC, GF(2), N = 40000 bits.
[From [17].]

(b) Block error probability of repeat-accumulate
codes with rate 1/3 and various blocklengths, versus
Ey/Ny. The dotted lines show the frequency of unde-
tected errors.

and rate R = K/N, the number of constraints is of or-
der M = N — K. [There could be more constraints, if
they happen to be redundant.] Any linear code can
be described by a graph, but what makes a sparse
graph code special is that each constraint involves only
a small number of variables in the graph: the number
of edges in the graph scales roughly linearly with N,
rather than as N2,
The most famous sparse graph codes are

e Convolutional codes

Product codes

Low-density parity-check codes (Gallager codes)

Turbo codes

e Repeat-accumulate codes

Also worth mentioning are:

e Low-density generator-matrix codes (sometimes
called Sourlas codes). These could be split into
two categories:

1. Systematic sparse generator matrix.

2. Non-systematic sparse generator matrix.

Both these families of codes have bad distance
properties (trivially), and their performance un-
der optimal (maximum likelihood) decoding is
bad too.

e MacKay-Neal codes (MN codes) [4, 18]. These
are nonlinear codes. A single parameter controls
a ‘sparsifier’, through which the original dense
data is passed before encoding. The decoder can
then make use of the knowledge that both the
source bits and the noise bits are sparse when
decoding. The code is defined in terms of a sparse
graph such that decoding can be done using the
same message-passing algorithms as for Gallager
codes, but with both source bits and noise bits
being inferred.

In the special case where an MN code has no
sparsfier, the MN code is a linear code.

The objects in the graph

The graph defining a low—density parity—check code,
or Gallager code [1, 19, 18], contains two types of node:
codeword bits, and parity constraints. In a regular
(4, k) Gallager code (figure la), each codeword bit is
connected to j parity constraints and each constraint
is connected to k bits. The connections in the graph
are made at random.

Repeat-accumulate codes [14] can be represented
by a graph with four types of node (figure 1b): equal-
ity constraints [=], intermediate binary variables (black
circles), parity constraints [+], and the transmitted bits
(white circles). The encoder sets each group of inter-
mediate bits to values read from the source. These
bits are put through a fixed random permutation. The
transmitted stream is the accumulated sum (modulo
2) of the permuted intermediate bits.

In a turbo code [11], the K source bits drive two
linear feedback shift registers, which emit parity bits
(figure 1c).

All these codes can be decoded by a local message-
passing algorithm on the graph, the sum-product algo-
rithm [2, 20], and, while this algorithm is not the opti-
mal decoder, the empirical results are record-breaking.
Figure 2 shows the performance of various sparse graph
codes on a Gaussian channel. In figure 2(a) turbo codes
with rate 1/4 are compared with regular and irregular
Gallager codes over GF(2), GF(8) and GF(16). In fig-
ure 2(b) the performance of repeat-accumulate codes
of various blocklengths and rate 1/3 is shown.

3 Issues in sparse graph codes

In this section we explore a few issues relating to the
construction of good sparse graph codes.

3.1 State variables

Both repeat-accumulate (RA) codes and turbo codes
have their simplest description in terms of graphs that
employ state variables. These are variables that do
not form part of the transmitted codeword.

Gallager codes do not have state variables. Regular
turbo codes outperform regular Gallager codes. Is this
because turbo codes have state variables? The best
codes known at present are irregular Gallager codes
[17, 16]; are even better irregular codes with state vari-
ables waiting to be created? [Incidentally, it’s not es-
sential to have state variables in turbo codes and RA
codes: both of these codes can also be represented in
terms of low density parity check matrices, as I have
pointed out elsewhere.]

Question 1: Are state variables going to be present
in the best codes?

3.2 Connectivity

Another distinction can be drawn between Gallager
codes, RA codes and turbo codes. In Gallager codes
studied to date, apart from those of Kanter and Saad
[21], every transmitted bit is connected to two or more
constraint nodes. In RA codes, every transmitted bit is
connected to two constraint nodes. In turbo codes, in
contrast, all the parity bits have a connectivity of only
1; they dangle from the trellis. So in Gallager codes
and RA codes, when messages are passed during decod-
ing, every transmitted bit is a conduit through which
decoding information flows; in contrast, turbo codes
have backwaters: the message-passing tide laps against
the dangling parity bits, but they do not send on mes-
sages to anywhere else. I always assumed that these
dangling bits of turbo codes were a weakness; and that
there would be no advantage to having equivalent bits
in Gallager codes, which would correspond to weight-
one columns in the parity check matrix. However the
results of Kanter and Saad [21] force this assumption
to be reassessed.

Question 2: Is there anything intrinsically good or
bad about having transmitted bits that dangle
from the graph with connectivity one?

One can certainly have too many weight-one columns.
Low-density generator-matrix codes are trivially shown
to be bad codes, because they have many low weight
codewords. Their parity check matrices have M columns
of weight one. This is too many. But it is plausible that
the best codes might have aM weight-one columns, for
some a < 1.

Question 3: Do the best Gallager codes have some
weight-one columns? If so, how many?

3.3 Weight-two columns

A similar question has been floating around for some
time:

Question 4: How many weight-two columns can a Gal-
lager code of rate R have, and still remain a
‘good’ code?

At one end of the spectrum, Gallager codes having en-
tirely weight-two columns, known as cycle codes, have
been studied by Wiberg [22] and others. They are
known to have bad distance properties, especially if
the weight-2 columns are constructed at random, but
this does not immediately imply that they are ‘bad’
codes in terms of their bit error probability under max-
imum likelihood decoding. Indeed, for binary symmet-
ric channels with noise level below a threshold, cycle
codes are ‘good’ codes.

At the other extreme, I have for several years im-
posed on my own Gallager codes the rule that ‘the
maximum safe number of weight two columns in a bi-
nary Gallager code is M /2’ (where M is the number
of rows in the parity check matrix). This rule was
motivated by my investigations in 1994 of ‘staircase
Gallager codes’, which have M columns of weight 2
(discussed later in this paper). I observed that such
codes often have a small number of low-weight code-
words, because the weight-2 columns give a cheap way
of stitching up near-codewords created from the other
columns of the matrix. I now wonder whether my M /2
rule was too strict, and I should have persisted with
larger numbers of weight-2 columns.

The automatic profile-optimizing programs of Rich-
ardson, Urbanke and Chung often turn out profiles
with large fractions of weight-2 columns. Their op-
timizations are based on belief propagation on infinite
graphs, and so do not take into account the worrying
issue of low-weight codewords. The optimizations find
the threshold at which the bit error probability is pre-
dicted to go to zero, not the block error probability.

Question 5: Are the optimized profiles found by infinite-
graph simulations appropriate for finite graphs,
particularly the fraction of low-weight columns?
Are there optimization methods that optimize
the block error probability instead of the bit error
probability?

4 Generalized parity-check ma-
trices
I find that it is helpful when relating sparse graph codes

to each other to find generalized parity-check matrices
for them. In a parity-check matrix, the columns are

transmitted bits, and the rows are linear constraints.
In a generalized parity-check matrix, additional columns
may be included, which represent state variables that
are not transmitted. One way of thinking of these state
variables is that they are punctured from the code be-
fore transmission.

The notation for state variables is a horizontal line
above the corresponding columns. The other pieces of
diagramatic notation for generalized parity-check ma-
trices are, as in [18, 12]:

¢ A diagonal line in a square indicates that that
part of the matrix contains an identity matrix.

e Two or more parallel diagonal lines indicate a
band-diagonal matrix with a corresponding num-
ber of 1s per row.

o A horizontal ellipse with an arrow on it indicates
that the corresponding columns in a block are
randomly permuted.

e A vertical ellipse with an arrow on it indicates
that the corresponding rows in a block are ran-
domly permuted.

¢ An integer surrounded by a circle represents that
number of superposed random permutation ma-
trices.

Mathematically, a generalized parity-check matrix
is a pair {A,p}, where A is a binary matrix and p is
a list of the punctured bits. The matrix defines a set
of valid vectors x, satisfying

Ax =0; (1)

for each valid vector there is a codeword t(x) which is
obtained by puncturing from x the bits indicated by
p.

The rate of a code with generalized parity-check
matrix {A,p} can be estimated as follows. If A is
L x M', and p punctures S bits and selects N bits for
transmission (L = N + 5), then the effective number
of constraints on the codeword, M, is

M=M -35, (2)
the number of source bits is
K=N-M=L-M, (3)
and the rate is greater than or equal to
M M -8
=l-—==1-— 4
E=1 N L-S)

4.1 Examples
Repetition code.

The generator matrix, parity check matrix, and gener-
alized parity check matrix of a simple rate-1/3 repeti-
tion code are shown in figure 3.

GT = H =

{A,p} =

Figure 3. The generator matrix, parity check matrix, and
generalized parity check matrix of a repetition code with
rate 1/3.

G =

©
3 ©
3

Figure 4. The generator matrix and parity check matrix
of a systematic low-density generator-matrix code. The
code has rate 1/3.

Figure 5. The generator matrix and generalized parity

check matrix of a non-systematic low-density generator-
matrix code. The code has rate 1/2.

GT = A’p =

3

(a) (b) (c)

Figure 6. The generalized parity check matrices of (a) a
rate-1/3 Gallager code with M /2 columns of weight 2;
(b) a rate-1/2 linear MN code; (c) a rate-1/3 linear MN
code.

Systematic low-density generator-matrix code.

In an (N, K) systematic low-density generator-matrix
code, there are no state variables. A transmitted code-
word t of length N is given by

t=G's, (5)
where I
T K
a=[%]. ©)

with Iy denoting the K x K identity matrix, and P
being a very sparse M x K matrix, where M = N — K.
The parity-check matrix of this code is

H=[P|Iy]. (7)

In the case of a rate 1/3 code, this parity check matrix
might be represented as shown in figure 4.

Non-systematic low-density generator-matrix code.

In an (N, K) non-systematic low-density generator-matrix
code, A transmitted codeword t of length N is given
by

t=Gs, (8)

where G' is a very sparse N x K matrix. The gener-
alized parity-check matrix of this code is

A=[Gy], 9)

and the corresponding generalized parity-check equa-
tion is
Ax =0, (10)

where x = :

Whereas the parity-check matrix of this simple code
is typically a complex, dense matrix, the generalized
parity-check matrix retains the underlying simplicity
of the code.

In the case of a rate-1/2 code, this generalized par-
ity check matrix might be represented as shown in fig-
ure 5.

Low-density parity-check codes and linear MIN
codes.

The parity-check matrix of a rate-1/3 low-density parity-
check code is shown in figure 6(a).

A linear MN code is an MN code in which the
source bits have density 1/2. Such MN codes can
be viewed as non-systematic low-density parity-check
codes. The K state bits of an MN code are the source
bits. Figure 6(b) shows the generalized parity-check
matrix of a rate-1/2 linear MN code, and figure 6(c)
shows that of a rate-1/3 linear MN code.

SO

ol

PO B

() (d)

Figure 7. Generalized parity-check matrices for (a) a ‘stair-
case Gallager code’ having M columns of weight 2. (b)
another staircase Gallager code with identical column-
profile and slightly different row-profile. (c,d) Linear
MN codes with rate 1/2 derived from the above two
rate-1/3 codes.

QICIC

(a) (b)

Figure 8. The generalized parity check matrices of (a) a
repeat-accumulate code with rate 1/3; (b) an irregular
repeat-accumulate code with rate 1/3.

(a) (b)

Figure 9. The generalized parity check matrices of (a) a
convolutional code with rate 1/2. (b) a rate-1/3 turbo
code built by parallel concatenation of two convolu-
tional codes.

‘Staircase’ MN codes.

MacKay and Neal (unpublished, 1996) studied MN
codes in which M’ of the columns had weight 2, ar-
ranged as shown in figure 7(c). Because such codes
were found to have small numbers of low-weight code-
words, we did not include them in our reports [2, 18],
which focused on codes with generalized parity-check
matrices like those in figures 6.

Convolutional codes.

In a non-systematic, non-recursive convolutional code,
the source bits, which play the role of state bits, are
fed into a delay-line and two linear functions of the
delay-line are transmitted. In figure 9(a), these two
parity streams are shown as two successive vectors of
length K. [It is common to interleave these two parity
streams, a bit-reordering that is not relevant here, and
is not illustrated.]

In a systematic, recursive convolutional code, the
source bits are transmitted, and are fed into a linear-
feedback shift-register. The generalized parity-check
matrix of such a code is identical to that of the non-
systematic, non-recursive convolutional code, and the
two codes are identical in that the set of valid code-
words are identical; the only difference between the
two codes is the mapping of source bits to codewords.

Concatenation.

‘Parallel concatenation’ of two codes is represented in
one of these diagrams by aligning the matrices of two
codes in such a way that the ‘source bits’ line up, and
by adding blocks of zero-entries to the matrix such that
the state bits and parity bits of the two codes occupy
separate columns. An example is given by the turbo
code below.

In ‘serial concatenation’, the columns correspond-
ing to the transmitted bits of the first code are aligned
with the columns corresponding to the source bits of
the second code.

Turbo codes.

A turbo code is the parallel concatenation of two con-
volutional codes. The generalized parity-check matrix
of a rate-1/3 turbo code is shown in figure 9(b).

Repeat-accumulate codes.

The generalized parity-check matrices of two rate-1/3
repeat-accumulate codes are shown in figure 8. It is
amusing to notice that these repeat-accumulate codes
are identical to the staircase linear MN codes shown
in figure 7. If we had not been so wary of low-weight
codewords, it’s possible we would have appreciated the
importance of repeat-accumulate codes earlier!

B (@8I

(b)

Figure 10. The generalized parity check matrices of (a) the
rate 1/4 code of Kanter and Saad [21]; (b) another rate
1/4 code with similar profile that would have many low-
weight codewords.

Punctured repeat-accumulate codes.

Puncturing of turbo codes has been extensively stud-
ied. T don’t know if a similar study of repeat-accumulate
codes has been made. It seems plausible that an ir-
regular puncturing of some sort would be useful. Fig-
ure 8(b) shows the generalized parity-check matrix of a
rate-1/3 code obtained from a rate-1/4 repeat-accumulate
code by puncturing K of the transmitted bits.

5 The codes of Kanter and Saad

Some of the questions in section 3 have been prompted
by the results reported by Kanter and Saad [21], who
describe constructions of irregular MacKay-Neal codes
that give promising performance, though having an
error-floor at bit-error probabilities of about 1075.

The construction of the rate 1/4 code of Kanter
and Saad [21] is shown in figure 10(a). On a first read-
ing of their paper, I thought the construction was as
shown in figure 10(b), which shows a parity check ma-
trix with identical row-weights. [Indeed, I don’t think
there is sufficient information in the paper to distin-
guish between these interpretations; but (a) is the cor-
rect matrix (David Saad, personal communication).]
The matrix (b) has many low-weight codewords.

So, what can we say about these codes? What is
different about them, and what is familiar?

e Use of MN codes rather than Gallager codes.
In general, a matrix that defines an MN code can
be used to define Gallager codes. In my experi-
ence [18], wherever a matrix makes an impressive
MN code, it also makes an even more impressive
Gallager code (of higher rate). I am sceptical

about the idea that MN codes could be superior
to Gallager codes, but I would be happy to be
proved wrong.

¢ Use of weight-one and weight-two columns.
This is an innovation, compared with recent work
on Gallager codes. There are M/2 columns of
weight one and M /2 of weight two. These columns
are arranged in a systematic manner, with the
weight-two columns organised in the form of par-
allel lines of 1s. [Incidentally, this immediately
implies that the Gallager code is fast-encoding,
which is a nice property.]

e Arrangement of low weight columns. None
of the weight-one 1s appears in the same row as a
weight-two 1. This feature is important to avoid
low-weight codewords.

e There are no columns with very high weight (eg
20). The row weights are unequal but not greatly
S0.

e The systematic construction of the matrix in the
form of several blocks is similar to the construc-
tions studied by MacKay, Davey and Wilson [12,
13].

What are some simple ways of describing these codes,
in terms of pre-existing codes? Because the right-hand
portion of the matrix has a block-diagonal form, we
can describe the code as a parallel concatenation of
two constituent codes. The first code is a ‘staircase
MN code’, whose parity check matrix is shown in fig-
ure 7(d). The second is a low-density generator matrix
code, whose parity check matrix is shown in figure 5.
The parity check matrix in figure 10(a) can be con-
structed by pasting together those two parity check
matrices, with the parity bits appropriately offset.

The staircase code of figure 7(d) is somewhat rem-
iniscent of figure 10. Indeed one way of viewing any
staircase code (whether or not the row weight is 3 in all
rows) is that it is a repeat-accumulate code in which
some of the transmitted bits have been omitted (wher-
ever the row weight is greater than 3, a corresponding
number of transmitted bits are omitted). So the trans-
mitted bit is incremented by the sum of several bits,
rather than by just one.

Question 6: Are there any advantages in terms of
code strength to making the code by parallel
concatenation of two or more codes? [I always
assumed it would be best to have a single large
tangled graph, rather than having the graph sep-
arate into two weakly-connected pieces.]

Question 7: Do existing profile-optimizers for Gal-
lager codes include the option of having weight-
one columns? Should they?

Question 8: Most existing profile-optimizers for Gal-
lager codes assume that the graph will be con-
structed at random (the ‘Poisson’ construction).
With large numbers of weight-two and weight-
one columns, however, it seems likely that sys-
tematic non-Poisson constructions will be needed,
to avoid making a code that is infested with low-
weight codewords. How should these non-Poisson
constructions be optimized?

Question 9: What is the best message-passing sched-
ule for decoding codes that contain the staircase
motif? Perhaps the results of Kanter and Saad
[21] could be improved by using the sum-product
algorithm all the way up and down the trellis of
the staircase; this schedule is found to be supe-
rior in the case of the repeat-accumulate code, for
example (McEliece and students, personal com-
munication).

Acknowledgements

This work was supported by the Gatsby Charitable
Foundation and by a partnership award from IBM Re-
search Laboratory, Ziirich

References

[1] R. G. Gallager. Low density parity check codes.
IRE Trans. Info. Theory, IT-8:21-28, Jan 1962.

2] D. J. C. MacKay and R. M. Neal. Near
Shannon limit performance of low density par-
ity check codes. Electronics Letters, 32(18):1645—
1646, August 1996. Reprinted Electronics Letters,
33(6):457-458, March 1997.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima.
Near Shannon limit error-correcting coding and
decoding: Turbo-codes. In Proc. 1993 IEEE
International Conference on Communications,
Geneva, Switzerland, pages 1064-1070, 1993.

[4] D. J. C. MacKay and R. M. Neal. Good codes
based on very sparse matrices. In Colin Boyd, ed-
itor, Cryptography and Coding. 5th IMA Confer-
ence, number 1025 in Lecture Notes in Computer
Science, pages 100-111. Springer, Berlin, 1995.

[5] D. A. Spielman. Linear-time encodable and de-
codable error-correcting codes. IEEE Transac-
tions on Information Theory, 42(6.1):1723-1731,
November 1996.

[6] M. Sipser and D. A. Spielman. Expander
codes. IEEE Transactions on Information The-
ory, 42(6Pt1):1710-1722, 1996.

[7]

[8]

[9]

[11]

[12]

[13]

[15]

[16]

[17]

M. C. Davey and D. J. C. MacKay. Low density
parity check codes over GF(q). IEEE Communi-
cations Letters, 2(6):165-167, June 1998.

M. G. Luby, M. Mitzenmacher, M. Amin Shokrol-
lahi, D. A. Spielman, and V. Stemann. Practical
loss-resilient codes. In Proceedings of the Twenty-
Ninth Annual ACM Symposium on Theo ry of
Computing (STOC), 1997.

B. J. Frey and D. J. C. MacKay. Trellis-
constrained codes. In Proceedings of the 35th
Allerton Conference on Communication, Control,
and Computing, Sept. 1997, 1998. Available at
http://www.cs.utoronto.ca/~frey.

M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi,
and D. A. Spielman. Improved low-density parity-
check codes using irregular graphs and belief prop-
agation. In Proceedings of the IEEFE International
Symposium on Information Theory (ISIT), page
117, 1998.

C. Berrou and A. Glavieux. Near optimum er-
ror correcting coding and decoding: Turbo-codes.
IEEE Transactions on Communications, 44:1261—
1271, October 1996.

D. J. C. MacKay, S. T. Wilson, and M. C. Davey.
Comparison of constructions of irregular Gallager
codes. In Proceedings of the 36th Allerton Confer-
ence on Communication, Control, and Comput-
ing, Sept. 1998, pages 220-229, Monticello, Illi-
nois, 1998. Allerton House.

D. J. C. MacKay, S. T. Wilson, and M. C. Davey.
Comparison of constructions of irregular Gallager
codes. IEEE Transactions on Communications,
47(10):1449-1454, October 1999.

D. Divsalar, H. Jin, and R. J. McEliece. Coding
theorems for ‘turbo-like’ codes. In Proceedings of
the 36th Allerton Conference on Communication,
Control, and Computing, Sept. 1998, pages 201—
210, Monticello, Illinois, 1998. Allerton House.

Matthew C. Davey and David J. C. MacKay. Wa-
termark codes: Reliable communication over in-
sertion/deletion channels. In ISIT 2000, 2000.

R. Urbanke, T. Richardson, and Amin Shokrol-
lahi. Design of provably good low density parity
check codes. Submitted, 1999.

M. C. Davey and D. J. C. MacKay. Low den-
sity parity check codes over GF(q). In Proceedings
of the 1998 IEEE Information Theory Workshop,
pages 70-71. IEEE, June 1998.

D. J. C. MacKay. Good error correcting codes
based on very sparse matrices. IEEE Transactions
on Information Theory, 45(2):399-431, 1999.

[19] R. G. Gallager. Low Density Parity Check Codes.
Number 21 in Research monograph series. MIT
Press, Cambridge, Mass., 1963.

[20] R.J. McEliece, D. J. C. MacKay, and J.-F. Cheng.
Turbo decoding as an instance of Pearl’s ‘belief
propagation’ algorithm. IEEE Journal on Selected
Areas in Communications, 16(2):140-152, Febru-
ary 1998.

[21] I. Kanter and D. Saad. Error-correcting codes that
nearly saturate Shannon’s bound. Physics Review
Letters, 83(13):2660-2663, 1999.

[22] N. Wiberg. Codes and Decoding on General
Graphs. PhD thesis, Dept. of Electrical Engineer-
ing, Link6ping, Sweden, 1996. LinkoOping studies
in Science and Technology. Dissertation No. 440.

This paper appears in the proceedings of the work-
shop Information-Based Induction Sciences (IBIS 2000),
July 17-18 2000, Shizuoka, Japan.

The author’s website can be found at
http://wol.ra.phy.cam.ac.uk/.

