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Abstract

Bell and Sejnowski (1995) have derived a blind signal processing algorithm for a non-linear
feedforward network from an information maximization viewpoint. This paper first shows that
the same algorithm can be viewed as a maximum likelihood algorithm for the optimization of a
linear generative model.

Second, a covariant version of the algorithm is derived. This algorithm is simpler and
somewhat more biologically plausible, involving no matrix inversions; and it converges in a
smaller number of iterations.

Third, this paper gives a partial proof of the ‘folk-theorem’ that any mixture of sources with
high-kurtosis histograms is separable by the classic ICA algorithm.

Fourth, a collection of formulae are given that may be useful for the adaptation of the
non-linearity in the ICA algorithm.

1 Blind separation

Algorithms for blind separation (Jutten and Herault 1991; Comon et al. 1991; Bell and Sejnowski
1995; Hendin et al. 1994) attempt to recover source signals s from observations x which are linear
mixtures (with unknown coefficients V) of the source signals

x = Vs. (1)

The algorithms attempt to create the inverse of V (within a post-multiplicative factor) given only
a set of examples {x}.

Bell and Sejnowski (1995) have derived a blind separation algorithm from an information max-
imization viewpoint. The algorithm may be summarised as a linear mapping:

a = Wx (2)

followed by a non-linear map:
zi = φi(ai), (3)

where, for example, φ = − tanh(ai), with a learning rule:

∆W ∝ [WT]
−1

+ zxT. (4)
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Another non-linear function of ai, yi = g(ai), is also mentioned by Bell and Sejnowski, but it will
not be needed here.

This paper has four parts. First it is shown that Bell and Sejnowski’s (1995) algorithm may
be derived as a maximum likelihood algorithm. This has been independently pointed out by
Pearlmutter and Parra (1996) who also give an exciting generalization of the ICA algorithm.

Second, it is pointed out that the algorithm (4) is not covariant , and a covariant algorithm
is described which is simpler, faster, and somewhat more biologically plausible. This covariant
algorithm has been independently suggested by Amari et al. (1996) and is used by Pearlmutter and
Parra (1996).

Third, this paper gives a partial proof of the ‘folk-theorem’ that any mixture of sources with
high-kurtosis histograms is separable by the classic ICA algorithm.

Fourth, a collection of formulae are given that may be useful for the adaptation of the non-
linearity in the ICA algorithm.

2 Maximum likelihood derivation of ICA

2.1 Latent variable models

Many statistical models are generative models that make use of latent variables to describe a
probability distribution over observables (Everitt 1984).

Examples of latent variable models include mixture models, which model the observables as
coming from a superposed mixture of simple probability distributions (Hanson et al. 1991) (the
latent variables are the unknown class labels of the examples); hidden Markov models (Rabiner
and Juang 1986); factor analysis; Helmholtz machines (Hinton et al. 1995; Dayan et al. 1995); and
density networks (MacKay 1995; MacKay 1996).

Note that it is usual for the latent variables to have a simple distribution, often a separable
distribution. Thus when we learn a latent variable model, we are finding a description of the data
in terms of independent components. One thus might expect that an ‘independent component
analysis’ algorithm should have a description in terms of a generative latent variable model. And
this is indeed the case. Independent component analysis is latent variable modelling.

2.2 The generative model

Let us model the observable vector x = {xj}J
j=1 as being generated from latent variables s = {si}I

i=1

via a linear mapping V. The simplest derivation results if we assume I = J , i.e., the number of
sources is equal to the number of observations. The data we obtain are a set of N observations
D = {x(n)}N

n=1. We assume that the latent variables are independently distributed, with marginal
distributions P (si|H) ≡ pi(si). Here H denotes the assumed form of this model and the assumed
probability distributions pi of the latent variables.

The probability of the observables and the hidden variables, given V and H, is:

P ({x(n)}N
n=1, {s(n)}N

n=1|V,H) =
N
∏

n=1

[

P (x(n)|s(n),V,H)P (s(n)|H)
]

(5)

=
N
∏

n=1









∏

j

δ
(

x
(n)
j −∑i Vjis

(n)
i

)





(

∏

i

pi(s
(n)
i )

)



 . (6)

Here it has been assumed that the vector x is generated without noise, because this is the assumption
which leads to the Bell-Sejnowksi algorithm. It is straightforward to give another derivation in
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which the term δ
(

x
(n)
j −∑i Vjis

(n)
i

)

is replaced by a probability distribution over x
(n)
j with mean

∑

i Vjis
(n)
i . If this noise distribution has sufficiently small standard deviation then the identical

algorithm results.

2.3 The likelihood function

For learning about V from the data D, the relevant quantity is the likelihood function

P (D|V,H) =
∏

n

P (x(n)|V,H) (7)

which is a product of factors each of which is obtained by marginalizing over the latent variables.

We adopt summation convention at this point, such that, for example, Vjis
(n)
i ≡ ∑

i Vjis
(n)
i . A

single factor in the likelihood is given by1

P (x(n)|V,H) =

∫

dIs(n) P (x(n)|s(n),V)P (s(n)) (8)

=

∫

dIs(n)
∏

j

δ
(

x
(n)
j − Vjis

(n)
i

)

∏

i

pi(s
(n)
i ) (9)

=
1

|detV|
∏

i

pi(V
−1
ij xj) (10)

⇒ log P (x(n)|V,H) = − log |detV| +
∑

i

log pi(V
−1
ij xj). (11)

To obtain a maximum likelihood algorithm we find the gradient of the log likelihood. If we introduce
W ≡ V−1, the log likelihood for a single example may be written:

log P (x(n)|V,H) = log detW +
∑

i

log pi(Wijxj). (12)

We will need the following identities:

∂

∂Vji
log detV = V −1

ij = Wij (13)

∂

∂Vji
V −1

lm = −V −1
lj V −1

im = −WljWim (14)

∂

∂Wij
f = −Vjm

(

∂

∂Vlm
f

)

Vli. (15)

Let us define ai ≡ Wijxj , φi(ai) ≡ d log pi(ai)/dai and zi = φi(ai), which indicates in which
direction ai needs to change to make the probability of the data greater. We may then obtain the
gradient with respect to Vji using equations (13) and (14):

∂

∂Vji
log P (x(n)|V,H) = −Wij − aizi′Wi′j . (16)

Or alternatively, the derivative with respect to Wij :

∂

∂Wij
log P (x(n)|V,H) = Vji + xjzi. (17)

If we choose to change W so as to ascend this gradient, we obtain precisely the learning algorithm
in Bell and Sejnowski (1995) (equation 4).

1Recall that for scalars,
∫

ds δ(x − vs)f(s) = 1

|v|
f(x/v).
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2.4 Examples

To help explain the generative modelling viewpoint, figures 1a-c illustrate typical distributions
generated by the independent components model when the components have 1/ cosh and Cauchy
distributions. Figure 1d shows some samples from the Cauchy model. The Cauchy distribution,
being the more heavy–tailed, gives the clearest picture of how the predictive distribution depends
on the assumed generative parameters V.

The two best known special cases are:

1. No nonlinearity. If φi(ai) = −κai, then implicitly we are assuming a Gaussian distribution
on the latent variables. It is well known that the H-J algorithm only works because of its
non-linearities; if the algorithm has linear output z then all that is obtained is second-order
decorrelation. Equivalently, the Gaussian distribution on the latent variables is invariant
under rotation of the latent variables, so there can be no evidence favouring any particular
alignment of the latent variable space.

2. A tanh nonlinearity. If φi(ai) = − tanh(ai) then implicitly we are assuming pi(si) ∝ 1/ cosh(si) ∝
1

esi+e−si
. This is a heavier-tailed distribution for the latent variables than the Gaussian dis-

tribution. But heavier tails still would be a possibility.

3. We could also use a tanh nonlinearity with gain β, that is, φi(ai) = − tanh(βai). As β varies
the implied probabilistic model changes, and is given by pi(si) ∝ 1/[cosh(βsi)]

1/β . In the
limit of large β, the non-linearity becomes a step function and the probability distribution
pi(si) becomes a biexponential distribution, pi(si) ∝ exp(−|s|). In the limit β → 0 pi(si)
approaches a Gaussian with mean zero and variance 1/β.

3 A covariant, simpler and faster learning algorithm

We have thus derived a learning algorithm which performs steepest descents on the likelihood
function.

Some designers of learning algorithms advocate the principle of covariance, which says, collo-
quially, that a consistent algorithm should give the same results independent of the units in which
quantities are measured (Knuth 1968).

A prime example of a non-covariant algorithm is the popular steepest descents rule. A dimen-
sionless objective function L(w) is defined, its derivative with respect to some parameters w is
computed, and then w is changed by the rule

∆wi = η
∂L

∂wi
. (18)

This popular equation is dimensionally inconsistent: the left hand side of this equation has dimen-
sions of [wi] and the right hand side has dimensions 1/[wi]. The behaviour of the learning algorithm
(18) is not covariant with respect to linear rescaling of the vector w. Dimensional inconsistency
is not the end of the world, as the success of the backpropagation algorithm has demonstrated,
and indeed if η decreases with n (during on-line learning) as 1/n then the Munro-Robbins theo-
rem (Bishop 1992:p.41) shows that the parameters will asymptotically converge to the maximum
likelihood parameters. But the non-covariant algorithm may take a very large number of iterations
to achieve this convergence; indeed many former users of steepest descents algorithms prefer to
use algorithms such as conjugate gradients that adaptively figure out the curvature of the objec-
tive function. The defense of equation (18) that points out η could be a dimensional constant is
untenable if not all the parameters wi have the same dimensions.
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Figure 1: Illustration of the generative models implicit in the learning algorithm. (a) Dis-
tributions over two observables generated by 1/ cosh distributions on the latent variables, for

V =

[

3/4 1/2
1/2 1

]

(compact distribution) and V =

[

2 −1
−1 3/2

]

(broader distribution). (b)

Contours of the generative distributions when the latent variables have Cauchy distributions. The
learning algorithm fits this amoeboid object to the empirical data in such a way as to maximize the
likelihood. The contour plot in (b) does not adequately represent this heavy-tailed distribution.
(c) Part of the tails of the Cauchy distribution, giving the contours 0.01 . . . 0.1 times the density at
the origin. (d) Some data from one of the generative distributions illustrated in (b) and (c). Can
you tell which? 200 samples were created, of which 196 fell in the plotted region.
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The algorithm would be covariant if it had the form

∆wi = η
∑

i′

Mii′
∂L

∂wi
, (19)

where M is a matrix whose i, i′ element has dimensions [wiwi′ ]. From where can we obtain such a
matrix? Two sources of such matrices are metrics and curvatures.

3.1 Metrics and curvatures

If there is a natural metric that defines distances in our parameter space w, then a matrix M can
be obtained from the metric. There is often a natural choice. In the special case where there is a
known quadratic metric defining the length of a vector w, then the matrix can be obtained from
the quadratic form. For example if the length is w2 then the natural matrix is M = I, and steepest
descents is appropriate.

Another way of finding a metric is to look at the curvature of the objective function, defining
A ≡ −∇∇L (where ∇ ≡ ∂/∂w). Then the matrix M = A−1 will give a covariant algorithm; what
is more, this algorithm is the Newton algorithm, so we recognize that it will alleviate one of the
principle difficulties with steepest descents, namely its slow convergence to a minimum when the
objective function is at all ill-conditioned. The Newton algorithm converges to the minimum in a
single step if L is quadratic.

In some problems it may be that the curvature A consists of both data-dependent terms
and data-independent terms; in this case, one might choose to define the metric using the data-
independent terms only (Gull 1989). The resulting algorithm will still be covariant but it will
not implement an exact Newton step. Obviously there are many covariant algorithms; there is no
unique choice. But covariant algorithms are a small subset of the set of all algorithms!

For the present maximum likelihood problem we have evaluated the gradient with respect to V

and the gradient with respect to W = V−1. Bell and Sejnowski (1995) chose to perform steepest
ascents in W, a procedure which is not covariant. Let us construct an alternative algorithm that
is covariant with the help of the curvature of the log likelihood. Taking the second derivative of
the log likelihood with respect to W we obtain two terms, the first of which is data-independent:

∂Vji

∂Wkl
= −VjkVli, (20)

and the second of which is data-dependent:

∂(zixj)

∂Wkl
= xjxlδikz

′

i, (no sum over i) (21)

where z′ is the derivative of z. It is tempting to drop the data-dependent term and define the matrix
M by [M−1](ij)(kl) = [VjkVli]. However, this matrix is not positive definite (it has at least one non-
positive eigenvalue), so it is a poor approximation to the curvature of the log likelihood, which must
be positive definite in the neighbourhood of a maximum likelihood solution. We must therefore
consult the data-dependent term for inspiration. The aim is to find a convenient approximation to
the curvature and to obtain a covariant algorithm, not necessarily to implement an exact Newton
step. What is the average value of xjxlδikz

′
i? If the true value of V is V∗, then

〈

xjxlδikz
′

i

〉

=
〈

V ∗

jmsmsnV ∗

lnδikz
′

i

〉

. (22)

We now make several severe approximations: we replace V∗ by the present value of V, and replace
the correlated average 〈smsnz′i〉 by 〈smsn〉 〈z′i〉 ≡ ΣmnDi. Here Σ is the variance–covariance matrix
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of the latent variables (which is assumed to exist), and Di is the typical value of the curvature
d2 log pi(a)/da2. Given that the sources are assumed to be independent, Σ and D are both diagonal
matrices. These approximations motivate the matrix M given by:

[M−1](ij)(kl) = VjmΣmnVlnδikDi, (23)

that is,
M(ij)(kl) = WmjΣ

−1
mnWnlδikD

−1
i (24)

For simplicity, we further assume that the sources are similar to each other so that Σ and D are
both homogeneous and that ΣD = 1. This will ead us to an algorithm that is covariant with respect
to linear rescaling of the data x, but not with respect to linear rescaling of the latent variables. For
problems where these assumptions do not hold, it will be straightforward to retain inhomogeneous
Σ and D. We thus use:

M(ij)(kl) = WmjWmlδik (25)

Multiplying this matrix by the gradient in equation (17) we obtain the following covariant
learning algorithm:

∆Wij = η
(

Wij + Wi′jai′zi
)

(26)

Notice that this expression does not require any inversion of the matrix W. The only additional
computation once z has been computed is a single backward pass through the weights to compute
the quantity

x′

j = Wi′jai′ (27)

in terms of which the covariant algorithm reads:

∆Wij = η
(

Wij + x′

jzi

)

. (28)

3.2 Control of the step size

Finally, a comment should be made regarding the value of the dimensionless quantity η, assuming
that we implement the covariant algorithm ‘on–line’. If η is held to a constant value then one is
implicitly solving a weighted maximum likelihood problem with an exponential weighting of the
data. The parameters will not converge to a limiting value but will diffuse around the vicinity of
the maximum likelihood parameters as old data points are forgotten. If one wants all data points
to receive equal weight so that the parameters to converge to a limiting value then η should go as
1/n asymptotically, where n is the number of the current data point. If the objective function is
quadratic and the algorithm implements the Newton step exactly then η going as 1/n causes the
parameters to be exactly the maximum likelihood parameters for all n. If the objective function is
not quadratic and we didn’t choose the matrix so that the Newton step is performed then at the
nth iteration the parameters are not necessarily equal to the maximum likelihood parameters, but
asymptotically the parameters are guaranteed to converge to the maximum likelihood parameters,
by the Munro-Robbins theorem (Bishop 1992:p.41).

3.3 Comments

This covariant algorithm is simpler than the Bell and Sejnowski algorithm: it has no dependence on
V, so it requires no matrix inversion at all. This algorithm is thus not only dimensionally consistent
but it is also somewhat closer to biological plausibility.

Key points:
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1. The Bell-Sejnowski algorithm is non-local, because it involves a matrix inversion. The covari-
ant algorithm is local, involving only a single extra back-propagation through W.

2. The Bell-Sejnowski algorithm is not robust, because if the parameter matrix W strays towards
a value that is not invertible, then the gradient will diverge. In contrast, the covariant
algorithm has no such singular behaviour.

3. To make their algorithm well-behaved, Bell and Sejnowski made two modifications: (a) they
spherized the data first, transforming to a representation in which the data has homogenous
second order properties; (b) they used ‘batches’ when training. Without these two modifi-
cations, the algorithm is very poorly conditioned. Both these steps introduce a lag into the
learning process.

The preprocessing step can be interpreted as a way of making their steepest descents algorithm
covariant. But it is quicker not to spherize the data and to use the covariant algorithm.

4. Note that if you want to solve a real application where W might be continuously adapting in
time, the preprocessing requirement is kind of cumbersome.

3.4 Demonstration

I have made a simple comparison of the time taken for the two algorithms to solve a 2 × 2
decorrelation problem (without spherizing the data).

Data was generated using a biexponential distribution for the sources s1 and s2 and with
V = [[2, 1], [3, 1]] (that is, source 1 is twice as loud as source 2 at microphone 1, and it is three
times as loud at microphone 2).

For practical purposes one might wish to use ‘momentum’ µ, and / or batching of the data. For
simplicity I used no momentum and used batches of size either 1 or 200. (200 was the batch size
used by Bell and Sejnowski.) The parameter η was either optimized by trial and error to a single
value giving the fastest convergence, or else it was set to go as 1/n.

The results are shown in figures 2 and 3.
Notice how much faster the covariant algorithm is, and note the noisiness of the Bell-Sejnowski

algorithm. Note also that the scatterplots show that the B-S algorithm has not converged to a
perfect solution. There is still easily detected mixing of the two sources.

4 Robustness to choice of nonlinear function

The literature on independent component analysis contains a folk theorem that the algorithm is
robust to the details of the sources that are being separated, and that in particular the (− tanh)
function is likely to give good results for any sources with large kurtosis — that is, any sources
with sufficiently heavy tails.

I now give a partial proof of this folk theorem. The following theorem is less general than the folk
theorem in that it is only proven for two sources, for a limited set of high kurtosis distributions, and
with both sources having the same distribution. It is slightly more general than the folk theorem in
that it shows that a tanh function of any gain β (including a step function) has the same robustness
property.

Without loss of generality we assume that the true weights are W = V = I, with the question
then being, ‘could ICA find an alternative W which achieves greater likelihood?’ The following
theorem asserts that any other W (apart from trivial cases) achieves a lesser expected log likelihood.
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Figure 2: (a) Time course of weights using covariant algorithm with η = 1/n. (b) η = 0.002. (a2)
Scatter plot of outputs versus true source signals, from example 20000 to 30000 using the weights
in (a).
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Figure 3: (a) Time course of weights using Bell-Sejnowski algorithm with η = 0.0005, batch size
200. (Faster learning rates η proved unstable.) (a2) Scatter plot of outputs versus true source
signals, using the weights in (a). Note, comparing with figure 2, that the horizontal time axis is 5
times longer. (b) η = 0.002, batch size 1. (Faster learning rates proved unstable.)
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Theorem 1 Let data be generated from two sources both having symmetric density p(s) = p(−s).
Let x1 = s1 and x2 = s2, and define P (x) = p(x1)p(x2). Let the data be modelled with Q(x|W) =
detW Qs(Wx) where Qs(s) =

∏

i q(si), with d log q(s)/ds = − tanh(βs). If the true source density

p(s) is a continuous density that satisfies the heavy-tail condition:

d

ds

(

1

s

d log p

ds

)

> 0 ∀s > 0 (29)

and if W is a matrix with determinant 1 and I is the 2 × 2 identity matrix then

∫

d2x P (x) log Q(x|I) ≥
∫

d2x P (x) log Q(x|W) (30)

with equality holding only if W = I and in the trivial cases where W is a rotation-reflection through

nπ/2.

Comment: the constraint that W be a matrix with determinant 1 does not weaken the theorem.
If someone claims to find a non-trivial solution which has detW = ∆ 6= 1, then we can stretch
the axes of s-space by a factor of

√
∆; then the theorem says that by replacing W by I, the

expected value of the likelihood function will be increased. Thus the likelihood is maximized by a
W proportional to the identity matrix.

4.1 Proof

The proof proceeds in two steps, based on the following decomposition of W. A 2×2 transformation
W with determinant 1 has three degrees of freedom that can be represented in terms of pure shears

S(ζ) =

[

eζ 0
0 e−ζ

]

and pure rotations R =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

thus:

W = EnR(θ2)S(ζ)R(θ1), (31)

where E =

[

−1 0
0 −1

]

and n is zero or one. [We will ignore this optional inversion in the following.]

In the first step we will show that for any probability distribution p(s) and for any rotations
(θ1, θ2), the biggest likelihood is achieved by using a shear-less transformation (ζ = 0). In the
second step we show that out of all rotations, rotation through θ = 0 gives the greatest likelihood.

4.1.1 Zero shear is best

Let W = R(θ2)S(ζ)R(θ1), with θ1 and θ2 fixed. We will show that out of all values of ζ, ζ = 0
achieves the greatest likelihood.

Transforming to the basis y1, y2 in which the shear is diagonal S(ζ) =

[

eζ 0
0 e−ζ

]

, the density

P (x) transforms to P (y) = p [cos(θ)y1 + sin(θ)y2] p [cos(θ)y2 − sin(θ)y1] and Q(x) transforms to

Q(y) =
1

Z

/

cosh
[

cos(θ2)e
ζy1 − sin(θ2)e

−ζy2

]

cosh
[

cos(θ2)e
−ζy2 + sin(θ2)e

ζy1

]

(32)

≡ 1
/

cosh
(

ceζy1 − se−ζy2

)

cosh
(

ce−ζy2 + seζy1

)

, (33)

where c ≡ cos θ2 and s ≡ sin θ2 and Z is independent of ζ, θ1 and θ2. To prove that ζ = 0 is the
maximum likelihood shear, the only property of p that we will need is that the density P (y) is
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invariant under a rotation through 90 degrees. That is P (y) = P (y⊥), where y⊥ = (y2,−y1). So
the integral of interest

L(ζ) =

∫

P (y) log Q(y) (34)

can be rewritten

L(ζ) =
1

2

∫

P (y)
[

log Q(y) + log Q(y⊥)
]

(35)

= −1

2

∫

P (y) log
[

cosh
(

ceζy1 − se−ζy2

)

cosh
(

ce−ζy2 + seζy1

)

cosh
(

ceζy2 + se−ζy1

)

cosh
(

−ce−ζy1 + seζy2

)]

(36)

= −1

2

∫

P (y) log
[(

cosh
(

(cy1 + sy2)(e
ζ − e−ζ)

)

+ cosh
(

(cy1 − sy2)(e
ζ + e−ζ)

))

(

cosh
(

(cy2 + sy1)(e
ζ + e−ζ)

)

+ cosh
(

(sy1 − cy2)(e
ζ − e−ζ)

))]

. (37)

Here, we have used cosh A coshB = cosh(A + B) + cosh(A − B). Examining the product inside

the logarithm, we notice that cosh
(

(cy1 + sy2)(e
ζ − e−ζ)

)

achieves its minimum value of 1 only

when ζ = 0 (unless (cy1 + sy2) = 0, in which case this particular term is independent of ζ);

cosh
(

(cy1 − sy2)(e
ζ + e−ζ)

)

achieves its minimum value when (eζ + e−ζ) is minimized, that is,

when ζ = 0 (unless (cy1 − sy2) = 0, in which case this particular term is independent of ζ); and
similarly the other two terms are minimized when ζ = 0. So for any non-zero y the argument of
the logarithm is minimized by ζ = 0 (and only by this value of ζ). So the maximum likelihood W

is shearless.

4.1.2 Zero rotation is best

Having proved that the maximum likelihood W is shearless, we now need to prove that the max-
imum likelihood W of the form W = R(θ) has θ = 0 (or a multiple of π/2). We restrict our
attention to cases θ ∈ (0, π/4), since all other cases can be reduced to this interval. We param-
eterize x space by x = (r, φ) such that (x1, x2) = (r cos φ, r sinφ); we use the same notation for
y = R(θ)x = (r, φ + θ), and write Q thus:

Q(r, φ|θ) = q(r cos(φ + θ))q(r sin(φ + θ)), (38)

where q(s) = 1/(Z cosh(s)). The crucial property required here is that P (r, φ) = p(r cosφ)p(r sinφ)
is a decreasing function of φ for φ ∈ (0, π/4), if p satisfies the condition of the theorem.
Proof: If (x1, x2) = (r cos φ, r sinφ) and x1 > x2 > 0 then

∂

∂φ
log[p(r cos φ)p(r sinφ)] = − d

dx1
log p(x1)r sinφ +

d

dx2
log p(x2)r cos φ (39)

= x1x2

{

− 1

x1

d

dx1
log p(x1) +

1

x2

d

dx2
log p(x2)

}

(40)

> 0 if
d

ds

(

1

s

d log p

ds

)

> 0 ∀s > 0. (41)

For example, since 1/ cosh(s) satisfies this heavy tail condition, Q(r, φ|0) is a decreasing function
of φ for φ ∈ (0, π/4). Notice that under the transformation R(θ), for every point xA = (r, φ) that
is mapped to yA = (r, φ + θ), there is a point xB = (r,−(φ + θ)) that is mapped to yB = (r,−φ),
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and these points satisfy Q(r, θ + φ|θ) = Q(r,−θ − φ|θ) = Q(r, φ|0).
Proof:

Q(r,−θ−φ|θ) = q [r cos(−φ)] q [r sin(−φ)] = q [r cos(φ)] q [r sin(φ)] = Q(r, φ|0). (42)

Using these symmetries we can obtain

L(0)−L(θ) = 4

∫

dr

∫ π/4−θ/2

φ=−θ/2
dφ [P (r, φ) − P (r, φ+θ)] [log Q(r, φ|0) − log Q(r, φ+θ|0)] (43)

Now throughout the range of this integral, both the terms [P (r, φ) − P (r, φ + θ)] and [log Q(r, φ|0)−
log Q(r, φ + θ|0)] are positive because P and Q are both monotonic as proved at equation (41). This
completes the proof.

Perhaps a more general theorem could be proved which relies on some moment properties of p
rather than a heavy-tailedness defined in terms of smoothness properties.

5 Learning of the nonlinearity

Let us conclude by discussing how one might learn the density on the latent variables. (Bell
and Sejnowski 1995) discuss the concept of learning the nonlinearity, but don’t give an explicit
algorithm for doing this. One can construct a family of parameterized distributions pi (which must
be explicitly normalized), then differentiate the log likelihood.

5.1 Example of parameterization of non-linearity: Student distribution

P (x|ν) =
Γ[(ν + 1)/2]

(πν)1/2Γ[ν/2]

1

[1 + (x2/ν)](ν+1)/2
(44)

The derivative φ is given by:

d log P (x|ν)/dx = −x (ν + 1)

ν + x2
(45)

Learning of ν is achieved using the following gradient:

d

dν
log P (x|ν) =

1

2

[

Ψ

(

ν + 1

2

)

− Ψ

(

ν

2

)

− ln

(

ν + x2

ν

)

+
x2 − 1

ν + x2

]

, (46)

where the digamma function Ψ(x) = d
dx log Γ(x). The following approximation is accurate to within

8% for all t (MacKay and Peto 1995):

Ψ(t + 1/2) − Ψ(t) ' 1/t + log(t/(t + 1/2)). (47)

5.2 Learning of a tanh non-linearity

Let the distribution be

p(x|β) =
1/Z(β)

(cosh(βx))1/β
. (48)

As β increases this distribution tends to the biexponential distribution. The quantity z in the
learning algorithm is given by

z = d log p/dx = −d/dx
1

β
log cosh(βx) = − tanh(βx). (49)
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The normalizing constant Z(β) is given by the numerical approximation:

log Z(β) = a log

(

c

β
+ 1

)

+ b (50)

where c = 1.397, a = 0.522 and b = 0.692. Using this formula we get

d log Z/d(log β) ' −ac/(β + c) (51)

To learn β we need the derivative

d log p(x|β)/dβ ' −ac/(β + c) + log(cosh(βx))/β2 − x

β
tanh(βx) (52)

5.3 Non-equal dimensionalities

The real cocktail party problem, I > J is a challenge not addressed in this paper.
Let us now work out a learning algorithm for the case I < J (i.e., fewer sources than measure-

ments).
We define a generative model V with pseudoinverse W ≡ [VTV]−1

VT. We replace the δ
function above by a narrow Gaussian distribution. We assume for simplicity that the noise on each
component j is indepependent with variance σ2

ν ≡ 1/β.
The likelihood function is:

P ({x}|V) =
∏

n

∫

dIs P (x(n)|s,V)P (s). (53)

Let us assume that the noise level σ2
ν is sufficiently small that the term P (x(n)|s,V) has a sharp

peak that dominates each integral. Then each term in the product is a Gaussian integral and the
log likelihood for a single term is (c.f. (MacKay 1992; Bretthorst 1988; Green and MacKay 1996)):

log P (x(n)|V) =
J

2
log

β

2π
− β

2

(

x(n) −VsMP

)2
− 1

2
log det

(

VTV

2π

)

+ log P (sMP), (54)

where
sMP = Wx. (55)

This expression may be differentiated to obtain a learning rule for V. However, it may be more
interesting to pursue an alternative algorithm in which we do not assume the ability to compute
the pseudoinverse W.

[Work in progress]
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