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Abstract

This note describes the assumptions underlying the latent-variable-modelling work of
Miskin, Martoglio and MacKay for microarrays.

The aim is to give a non-technical summary of the model assumptions and the
computational methods. For further information, the thesis of James Miskin (2001)
should be consulted.

1 The Model

We assume that the data to be modelled is a matrix D of gene expression levels in different
tissues. The entry d;, gives the expression level of gene g in tissue ¢.

[We recognise that the raw data corresponding to one such measurement d,, typically
consists of one or more pairs of measurements, from which dy, is derived by taking averages
and ratios; ultimately we believe the most accurate results will be obtained by Bayesian
modelling of the full data set rather than the derived data D. We will return to this important
matter later.|

A cartoon of such a data matrix D is shown below. There are G = 37 genes and 7' =7
tissues.

How should we model such data? Many modelling methods have been applied (such as
‘clustering’ of genes, or principal components analysis) that have little justification apart
from empirical utility. We have chosen a latent variable model in which the latent variables
describe features that underlie the data. Within this model space our methods seek the
most efficient description of the data. Our model is simple — it is closely related to factor
analysis (Everitt, 1984) and independent component analysis (Bell and Sejnowski, 1995;
MacKay, 1996) — and we do not claim it is the best model; but because it is a Bayesian
model, the assumptions on which the model rests are clear, the model is readily extensible
should those assumptions be modified, and the model is readily comparable with alternative
quantified models, because our model quantifies how well it models the data.

[We quantify how efficiently a model H describes the data by the number of bits into
which the data could be compressed by the model. This number of bits L(D|H) is intimately
related to the probability of the data given the model, P(D|H) by L(D|H) = log, 1/P(D|H).]

We assume that gene expression levels vary under the influence of H latent variables,
ai,ds, - -.,ar. [How many latent variables there are, H, is something we will attempt to
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Figure 1: Mock data.

infer from the data.] Each gene expression level may be influenced by one or more of these
latent variables. Which genes are influenced by the hth latent variable, and how strongly,
is described by a vector by, with ¢ = 1...G. This vector describes a set of genes that are
expected to co-vary — they will tend to go up and down together. A list of H = 4 such
vectors is shown below.
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Figure 2: Differential gene expression signatures.

We call these vectors ‘differential gene expression signatures’, or just ‘signatures’ for
short.

The first latent variable in this example influences all genes. If the latent variable a; is
large, all genes are expressed at higher levels — though some more than others. We might
call such a latent variable a housekeeping latent variable. Latent variable number h = 3
influences just five of the genes, equally. Latent variable number A = 4 influences another
five. The second latent variable influences about half of the genes.
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We assume that the gene expression levels in each tissue ¢ are generated as follows: the
latent variables aq, ao, ..., ay are set to particular levels a;1, as9, ..., a;g, where ay, specifies
the strength of signature h present in tissue ¢; the gene expression levels d;, are then found
by adding up the signatures b4, weighted by the strengths a;,. We assume that the data are
noisy, with noise n;, in the measurement of d;y. So

dtg - Z athbhg + Nyg. (1)
h
Or, using matrix notation,
D=AB-+N. (2)

This is exactly how the mock data in figure 1 were generated. The signatures B are those
shown in figure 2; the strengths of the signatures are

3 01 2 062]
0.1 0.1 1 0.1
1 1 01 1
A=|1 0o 0 4 |[; (3)
0.1 1 01 1
51 02 1 1
1 1 0 1

and there was no noise. Another way of representing the matrices D, A and B is by Hinton
diagrams in which the magnitude of a number is shown by the size of a square.
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Here, all entries in the matrices A and B are positive, and all the squares are white; negative
entries would be represented by black squares.

If a model with a number of latent variables H significantly smaller than G fits the data
well, the model can evidently compress the data substantially, since each extra tissue’s GG
expression levels are captured by just H latent variables.

Now, having described our model of the mechanism underlying the data, we must discuss
how we can infer such a latent variable model from data.



2 Inference

If we specify a noise model, P(n), then our assumptions describe the probability of the data
given the latent variables A and the signatures B; for example, if we assume that the noise
is Gaussian with variance o2, then:

} : (4)

We now wish to infer A and B from D. To do this we require both the likelihood function
(4), which describes our assumptions about the noise, and a prior distribution over A and
B, P(A,B), which specifies what sort of values we think the strengths a and the signatures
b are likely to take on.

The prior on B is where we get the opportunity to specify whether the signatures are
all-positive (like the toy example), or whether negative values are possible (as would occur if
a latent variable corresponded to a factor which promoted transcription of some genes and
inhibited transcription of others. The prior on B can also specify whether we are expecting
the signatures to be largely sparse (like signatures 3 and 4 in the toy example). If we believed
that each gene is influenced by only one latent variable, we would put this property into the
prior; the resulting model would then behave very similarly to a ‘gene clustering’ model, in
which each gene is assigned to one cluster. The prior on A specifies the sort of variations in
the strengths that we expect to see from tissue to tissue.

We like to use hierarchical models to define our priors and likelihoods. The idea is that,
while we might believe that the noise is Gaussian, we probably don’t know the variance of
the noise in advance of the experiment. We thus include the unknown parameter o2 in our
model as a ‘hyperparameter’ and define the probability of the noise to be

t,g

1 1 ’
P(D‘AaBaU) = H { Wexp [_ﬁ <Dtg - ;Ath,Bhg>

P(N) = [ P(N|o*)P(c?), (5)

where P(0?) is the prior distribution of the noise variance, which we might represent by a
broad distribution (such as a Gamma distribution with large variance).

Similarly, we could slap Gaussian priors on A and B with associated hyperparameters.
However, this prior would not embody the possibility that the signatures B might be sparse —
a possibility which we would certainly like to include, since we can imagine that some groups
of covarying genes might be small in number. We therefore use a non-Gaussian, heavy-tailed
prior on B. This prior is parameterized by hyperparameters like o2 above, which control
how sparse B is, and what the typical magnitude of entries in B is expected to be.

Similarly, we are open to the possibility that A might be sparse, so we use a prior on A
which has heavy tails, with a heaviness controlled by hyperparameters. If we choose to force
both A and B to be non-negative then our model has similarities to that of Lee and Seung
(1999).

Finally, we are sceptical about the assertion that the noise N will be Gaussian, so we
actually prefer to use parameterized non-Gaussian noise models which have Gaussian noise
as a special case. In this way, we effectively allow the data to tell us what sort of noise model
we should be using. We often use a mixture of Gaussians or a mixture of exponentials to
produce our non-Gaussian distributions (Pearlmutter and Parra, 1996).

In our use of non-Gaussian priors, our model parts company with factor analysis and
is similar to independent component analysis. Unlike Bell and Sejnowski’s independent
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component analysis, we do not constrain the number of latent variables H to be equal to
the number of genes, G, however; we hope that H will be found to be smaller than G.

We will use o2 as a surrogate name for all the dozen-or-so hyperparameters of the prob-
ability distributions for A, B, and N.

2.1 The probability of everything
The probability of everything is
P(D,A,B,H, 0% = P(H)P(c*)P(A|o*)P(B|o®) P(D|A, B, 0?) (6)

Given the data, the probability of everything we don’t know is

P(A,B,H,0’|D) = ﬁP(D,A,B,H,aQ) (7)
1 2 2 2 2
= WD)P(H)P(a )P(A|0?)P(B|o?)P(D|A, B, o?). (8)

This beast, which describes the inferences we can draw from the data, is what we must now
contend with. It is a rather nasty probability distribution because:

1. There are many ways that a matrix D can be approximately decomposed into a product
AB.

2. The model includes hyperparameters, which give rise to technical difficulties. For ex-
ample settings of the unknown parameters A, B, H, 0? that mazimize the likelihood
function are not necessarily good representatives of where most of the posterior prob-
ability distribution is to be found. Maxima are misleading in high-dimensional spaces
(MacKay, 1999).

2.2 Approximate inference

A popular approach to model-fitting is to maximize the likelihood, or the posterior proba-
bility, with respect to the parameters. However, these ‘point estimation’ approaches ignore
volume information, and it is possible for the optimized parameters to be unrepresentative
of typical plausible parameters. We therefore use an approximation inference method that
takes into account volume information. In this variational approach, also known as ensemble
learning (see (MacKay, 1995) for a review), we approximate the exact posterior probability
P(A,B, H,0%D) (8) by a simpler distribution Q(A, B, H,0?) and adjust it to make it as
close as possible to P.

[The approximating distribution @) represents uncertainty in each parameter but is chosen
to be separable so it is unable to represent the correlations between the uncertainties of the
parameters. Our measure of closeness of () to P is a variational free energy,

Q(A, B, H,0?) 0
P(D,A,B,H,0?) (%)

F@= Y QA B H,%log

A B,H,¢?

A by-product of the optimization is that this variational free energy gives a bound on the
marginal likelihood, P(D), which is our measure of how well our model models the data.
The model could compress the data into log1/P (D) bits.
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Figure 3: An A matrix from a real experiment on the ‘Orchid glass’ data, provided by
Dr Michel Schummer et al., University of Washington, Seattle. The last column shows the
strength of the ‘ubiquitous’ latent variable, which influences all gene expression levels.



2.3 Inferring H

We don’t expect that we could ever pin down the number of latent variables, H, for a model
like this; given sufficiently large amounts of data, we think it is plausible that the number of
independent effects present in the data might be found to be quite large, with many of the
effects being small in magnitude.

Rather than directly tackling the question ‘what is H’, therefore, we use a large value
of H and use a prior that expects some of the effects to be small. This can be done either
by giving each row h of the matrix B a hyperparameter that controls the scale of all the
parameters in that row; or by having a similar parameter for each column A of A; or both.
When we infer the parameters using the variational method, what happens is that latent
variables whose roles are not well-determined by the data are effectively switched off; the
parameters a;, and by, associated with those latent variables are found to be very close to
zero, and have relatively large uncertainty. As an artefact of our approximate method, the
system behaves as if it is automatically choosing a value of H.

3 Where we are going

We would like to make a more accurate model of the data-generation process than equa-
tion (1).

3.1 Don’t normalize, model.

In some microarray experiments, each spot yields two measurements, an experimental mea-
surement my, and a control measurement l;,, and d;, is defined to be the ratio m,/l;,. We
would prefer to replace all such ‘normalizations’ of data by inferences of the implicit vari-
ables. The motivation for normalization here is that the amount of juice j;, that got into
the ¢, g spot is not known. We assume that the measurement m,, is given by the product of
the true gene expression level d;, with the amount of juice ji,;

mtg ~ dtgjtg (].0)

we attempt to control for this unknown variable j;, by measuring the control signal which
is assumed to be the product of the same amount of juice j;, with a constant control con-
centration d(©):

lyg =~ d©jy,. (11)

One reason why it is a bad idea to work with the experimental ratio my,/l;, is because the
noise in the ratio comes from noise in m and from noise in . Now, those noise variables
might be Gaussian — we’d like to know more about that — but the noise in the ratio certainly
won'’t be.

We would therefore prefer to include the unknown juice factors ji, explicitly in the equa-
tions. Our generative model would be:

Mig = Jig (Z athbhg) + ng) (12)
h
lyy = jtgd(o) + nﬁg), (13)

and we would infer the matrices A, B, and J from the data matrices M and L.
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3.2 Don’t average, model.

In cases where a single gene expression level has been measured multiple times for a single
tissue, we would prefer to have access to the raw data rather than to the average. Aver-
aging in general loses information from the data. Only in the special case where the data
measurements differ by Gaussian noise is the sample mean a sufficient statistic. In all other
cases, we can make better inferences if we work with the full data.

3.3 Big data sets please

Given large data sets we hope to be able to test and validate this model. We hope that
we will find robust signatures. We’ll only be able to do this with data sets that have many
tissues (large T); data sets with enormous G and small T are not so helpful at this stage
as it is impossible to validate a latent variable model if the number of independent draws 7’
from the model is small.

[Once the model is validated, it will be especially helpful to experimenters who have
data sets with small 7. We will be able to find the signatures from other larger data sets,
and then, assuming those signatures are applicable, will be able to infer the latent variables
characterizing the small data set. The model will thus allow one to control for many natural
sources of variability in small experiments.|
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