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6.8: Further exercises on data compression 125

probability density
Assuming that N is large, show that nearly all the probability of a is maximized here
Gaussian is contained in a thin shell of radius v/ No. Find the thickness /

of the shell.

Evaluate the probability density (6.13) at a point in that thin shell and VNo

at the origin x = 0 and compare. Use the case N = 1000 as an example. almost all
probability mass is here

Notice that nearly all the probability mass is located in a different part

of the space from the region of highest probability density. Figure 6.8. Schematic
representation of the typical set of

an N-dimensional Gaussian

. (2] . . . .
ﬁ% Exercise 6.15.17! Explain what is meant by an optimal binary symbol code. distribution.

Find an optimal binary symbol code for the ensemble:
'A = {a7b7 C7d7e7f7g7h7 i?j}’

p_J Lt 2 4 5 6 8 9 10 25 30
~ 11007 100’ 100”100’ 100’ 100’ 100’ 100" 100" 100 | ’
and compute the expected length of the code.

ﬁ% Exercise 6.16.12] A string y = 122 consists of two independent samples from
an ensemble

1 3 6
X: = ; = —,—,—r.
AX {a,b7C},PX {107 107 10}
What is the entropy of y? Construct an optimal binary symbol code for
the string y, and find its expected length.

ﬁ% Exercise 6.17.1%! Strings of N independent samples from an ensemble with

P = {0.1,0.9} are compressed using an arithmetic code that is matched

to that ensemble. Estimate the mean and standard deviation of the
compressed strings’ lengths for the case N = 1000. [H2(0.1) ~ 0.47]

Exercise 6.18.1%] Source coding with variable-length symbols.

In the chapters on source coding, we assumed that we were
encoding into a binary alphabet {0,1} in which both symbols
should be used with equal frequency. In this question we ex-
plore how the encoding alphabet should be used if the symbols
take different times to transmit.

A poverty-stricken student communicates for free with a friend using a
telephone by selecting an integer n € {1,2,3...}, making the friend’s
phone ring n times, then hanging up in the middle of the nth ring. This
process is repeated so that a string of symbols ningns... is received.
What is the optimal way to communicate? If large integers n are selected
then the message takes longer to communicate. If only small integers n
are used then the information content per symbol is small. We aim to
maximize the rate of information transfer, per unit time.

Assume that the time taken to transmit a number of rings n and to
redial is ,, seconds. Consider a probability distribution over n, {p,}.
Defining the average duration per symbol to be

L(p) = puln (6.15)
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and the entropy per symbol to be
1
H(p) = pnlog, o (6.16)
n n

show that for the average information rate per second to be maximized,
the symbols must be used with probabilities of the form

1
Pn = Erﬂln (6.17)

where Z =), 27Pln and 3 satisfies the implicit equation

g="> (6.18)

that is, 3 is the rate of communication. Show that these two equations
(6.17, 6.18) imply that § must be set such that

log Z = 0. (6.19)

Assuming that the channel has the property
l,, = n seconds, (6.20)
find the optimal distribution p and show that the maximal information

rate is 1 bit per second.

How does this compare with the information rate per second achieved if
p is set to (1/2,1/2,0,0,0,0,...) — that is, only the symbols n = 1 and
n = 2 are selected, and they have equal probability?

Discuss the relationship between the results (6.17, 6.19) derived above,
and the Kraft inequality from source coding theory.

How might a random binary source be efficiently encoded into a se-
quence of symbols nineng ... for transmission over the channel defined
in equation (6.20)?

> Exercise 6.19.[7] How many bits does it take to shuffle a pack of cards?

> Exercise 6.20.12] Tn the card game Bridge, the four players receive 13 cards

each from the deck of 52 and start each game by looking at their own
hand and bidding. The legal bids are, in ascending order 1, 1,10, 1,
INT, 2&, 2, ... 7O, 78, 7TNT, and successive bids must follow this
order; a bid of, say, 20 may only be followed by higher bids such as 2&
or 3d or TNT. (Let us neglect the ‘double’ bid.)

The players have several aims when bidding. One of the aims is for two
partners to communicate to each other as much as possible about what
cards are in their hands.

Let us concentrate on this task.

(a) After the cards have been dealt, how many bits are needed for North
to convey to South what her hand is?

(b) Assuming that E and W do not bid at all, what is the maximum
total information that N and S can convey to each other while
bidding? Assume that N starts the bidding, and that once either
N or S stops bidding, the bidding stops.

6 — Stream Codes
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6.9: Solutions

> Exercise 6.21.[2] My old ‘arabic’ microwave oven had 11 buttons for entering
cooking times, and my new ‘roman’ microwave has just five. The but-
tons of the roman microwave are labelled ‘10 minutes’, ‘1 minute’, ‘10
seconds’, ‘1 second’, and ‘Start’; I'll abbreviate these five strings to the
symbols M, C, X, I, .  To enter one minute and twenty-three seconds
(1:23), the arabic sequence is

1230, (6.21)
and the roman sequence is
CXXIIIO. (6.22)

Each of these keypads defines a code mapping the 3599 cooking times
from 0:01 to 59:59 into a string of symbols.

(a) Which times can be produced with two or three symbols? (For
example, 0:20 can be produced by three symbols in either code:
XXO and 200.)

(b) Are the two codes complete? Give a detailed answer.

(c) For each code, name a cooking time that it can produce in four
symbols that the other code cannot.

(d) Discuss the implicit probability distributions over times to which
each of these codes is best matched.

(e) Concoct a plausible probability distribution over times that a real
user might use, and evaluate roughly the expected number of sym-
bols, and maximum number of symbols, that each code requires.
Discuss the ways in which each code is inefficient or efficient.

(f) Invent a more efficient cooking-time-encoding system for a mi-
crowave Over.

Exercise 6.22.[% P-132] 14 the standard binary representation for positive inte-
gers (e.g. ¢p(5) = 101) a uniquely decodeable code?

Design a binary code for the positive integers, i.e., a mapping from
n € {1,2,3,...} to ¢(n) € {0,1}", that is uniquely decodeable. Try
to design codes that are prefix codes and that satisfy the Kraft equality

S 27 =1,

Motivations: any data file terminated by a special end of file character
can be mapped onto an integer, so a prefix code for integers can be used
as a self-delimiting encoding of files too. Large files correspond to large
integers. Also, one of the building blocks of a ‘universal’ coding scheme —
that is, a coding scheme that will work OK for a large variety of sources
— is the ability to encode integers. Finally, in microwave ovens, cooking
times are positive integers!

Discuss criteria by which one might compare alternative codes for inte-
gers (or, equivalently, alternative self-delimiting codes for files).

» 6.9 Solutions

Solution to exercise 6.1 (p.115). The worst-case situation is when the interval
to be represented lies just inside a binary interval. In this case, we may choose
either of two binary intervals as shown in figure 6.10. These binary intervals

127
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Figure 6.9. Alternative keypads
for microwave ovens.
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128 6 — Stream Codes

Figure 6.10. Termination of
Source string’s interval ~ Binary intervals arithmetic coding in the worst
case, where there is a two bit
overhead. Either of the two
— binary intervals marked on the
right-hand side may be chosen.
These binary intervals are no
Px[H) smaller than P(x|H)/4.

are no smaller than P(x|H)/4, so the binary encoding has a length no greater
than logy, 1/P(x|H) + log, 4, which is two bits more than the ideal message
length.

Solution to exercise 6.3 (p.118). The standard method uses 32 random bits
per generated symbol and so requires 32000 bits to generate one thousand
samples.

Arithmetic coding uses on average about H2(0.01) = 0.081 bits per gener-
ated symbol, and so requires about 83 bits to generate one thousand samples
(assuming an overhead of roughly two bits associated with termination).

Fluctuations in the number of 1s would produce variations around this
mean with standard deviation 21.

Solution to exercise 6.5 (p.120). The encoding is 010100110010110001100,
which comes from the parsing

0,00, 000, 0000, 001, 00000, 000000 (6.23)
which is encoded thus:
(,0),(1,0),(10,0),(11,0),(010,1),(100,0),(110,0). (6.24)

Solution to exercise 6.6 (p.120). The decoding is
0100001000100010101000001.

Solution to exercise 6.8 (p.123).  This problem is equivalent to exercise 6.7
(p.123).

The selection of K objects from N objects requires [logy (%)1 bits ~
NHy(K/N) bits. This selection could be made using arithmetic coding. The
selection corresponds to a binary string of length N in which the 1 bits rep-
resent which objects are selected. Initially the probability of a 1 is K/N and
the probability of a 0 is (N—K)/N. Thereafter, given that the emitted string
thus far, of length n, contains k 1s, the probability of a 1 is (K—k)/(N—n)
and the probability of a 0 is 1 — (K —k)/(N—n).

Solution to exercise 6.12 (p.124). This modified Lempel-Ziv code is still not
‘complete’, because, for example, after five prefixes have been collected, the
pointer could be any of the strings 000, 001, 010, 011, 100, but it cannot be
101, 110 or 111. Thus there are some binary strings that cannot be produced
as encodings.

Solution to exercise 6.13 (p.124). Sources with low entropy that are not well
compressed by Lempel-Ziv include:
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6.9: Solutions

L]

Figure 6.11. A source with low entropy that is not well compressed by Lempel-Ziv. The bit sequence
is read from left to right. Each line differs from the line above in f = 5% of its bits. The

b
|

(a) Sources with some symbols that have long range correlations and inter-

vening random junk. An ideal model should capture what’s correlated
and compress it. Lempel-Ziv can compress the correlated features only
by memorizing all cases of the intervening junk. As a simple example,
consider a telephone book in which every line contains an (old number,
new number) pair:

285-3820:572-58920

258-8302:593-20100
The number of characters per line is 18, drawn from the 13-character
alphabet {0,1,...,9,—,:,0}. The characters ‘=’, ‘:” and ‘0’ occur in a
predictable sequence, so the true information content per line, assuming
all the phone numbers are seven digits long, and assuming that they are
random sequences, is about 14 bans. (A ban is the information content of
a random integer between 0 and 9.) A finite state language model could
easily capture the regularities in these data. A Lempel-Ziv algorithm
will take a long time before it compresses such a file down to 14 bans
per line, however, because in order for it to ‘learn’ that the string :ddd
is always followed by -, for any three digits ddd, it will have to see all
those strings. So near-optimal compression will only be achieved after

thousands of lines of the file have been read.
e
I
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image width is 400 pixels.

(b) Sources with long range correlations, for example two-dimensional im-

ages that are represented by a sequence of pixels, row by row, so that
vertically adjacent pixels are a distance w apart in the source stream,
where w is the image width. Consider, for example, a fax transmission in
which each line is very similar to the previous line (figure 6.11). The true
entropy is only Ha(f) per pixel, where f is the probability that a pixel
differs from its parent. Lempel-Ziv algorithms will only compress down
to the entropy once all strings of length 2 = 2490 have occurred and
their successors have been memorized. There are only about 23%° par-
ticles in the universe, so we can confidently say that Lempel-Ziv codes
will never capture the redundancy of such an image.

Another highly redundant texture is shown in figure 6.12. The image was
made by dropping horizontal and vertical pins randomly on the plane. It
contains both long-range vertical correlations and long-range horizontal
correlations. There is no practical way that Lempel-Ziv, fed with a
pixel-by-pixel scan of this image, could capture both these correlations.

Biological computational systems can readily identify the redundancy in
these images and in images that are much more complex; thus we might
anticipate that the best data compression algorithms will result from the
development of artificial intelligence methods.

N i
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Figure 6.12. A texture consisting of horizontal and vertical pins dropped at random on the plane.

()

(d)

Sources with intricate redundancy, such as files generated by computers.
For example, a ITEX file followed by its encoding into a PostScript
file. The information content of this pair of files is roughly equal to the
information content of the IXTEX file alone.

A picture of the Mandelbrot set. The picture has an information content
equal to the number of bits required to specify the range of the complex
plane studied, the pixel sizes, and the colouring rule used.

A picture of a ground state of a frustrated antiferromagnetic Ising model
(figure 6.13), which we will discuss in Chapter 31. Like figure 6.12, this
binary image has interesting correlations in two directions.

Cellular automata — figure 6.14 shows the state history of 100 steps of
a cellular automaton with 400 cells. The update rule, in which each
cell’s new state depends on the state of five preceding cells, was selected
at random. The information content is equal to the information in the
boundary (400 bits), and the propagation rule, which here can be de-
scribed in 32 bits. An optimal compressor will thus give a compressed file
length which is essentially constant, independent of the vertical height of
the image. Lempel-Ziv would only give this zero-cost compression once
the cellular automaton has entered a periodic limit cycle, which could
easily take about 219 iterations.

In contrast, the JBIG compression method, which models the probability
of a pixel given its local context and uses arithmetic coding, would do a
good job on these images.

Solution to exercise 6.14 (p.124). For a one-dimensional Gaussian, the vari-

ance

2

of x, £[z?%], is 6%. So the mean value of r2 in N dimensions, since the

components of x are independent random variables, is

E[r?Y] = No?. (6.25)

Figure 6.13. Frustrated triangular
Ising model in one of its ground
states.



