
Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.9: Solutions 131

Figure 6.14. The 100-step time-history of a cellular automaton with 400 cells.

The variance of r2, similarly, is N times the variance of x2, where x is a
one-dimensional Gaussian variable.

var(x2) =

∫

dx
1

(2πσ2)1/2
x4 exp

(

− x2

2σ2

)

− σ4. (6.26)

The integral is found to be 3σ4 (equation (6.14)), so var(x2) = 2σ4. Thus the
variance of r2 is 2Nσ4.

For large N , the central-limit theorem indicates that r2 has a Gaussian
distribution with mean Nσ2 and standard deviation

√
2Nσ2, so the probability

density of r must similarly be concentrated about r '
√

Nσ.
The thickness of this shell is given by turning the standard deviation

of r2 into a standard deviation on r: for small δr/r, δ log r = δr/r =
(1/2)δ log r2 = (1/2)δ(r2)/r2, so setting δ(r2) =

√
2Nσ2, r has standard de-

viation δr = (1/2)rδ(r2)/r2 = σ/
√

2.
The probability density of the Gaussian at a point xshell where r =

√
Nσ

is

P (xshell) =
1

(2πσ2)N/2
exp

(

−Nσ2

2σ2

)

=
1

(2πσ2)N/2
exp

(

−N

2

)

. (6.27)

Whereas the probability density at the origin is

P (x=0) =
1

(2πσ2)N/2
. (6.28)

Thus P (xshell)/P (x= 0) = exp (−N/2) . The probability density at the typical
radius is e−N/2 times smaller than the density at the origin. If N = 1000, then
the probability density at the origin is e500 times greater.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

7

Codes for Integers

This chapter is an aside, which may safely be skipped.

Solution to exercise 6.22 (p.127)

To discuss the coding of integers we need some definitions.

The standard binary representation of a positive integer n will be
denoted by cb(n), e.g., cb(5) = 101, cb(45) = 101101.

The standard binary length of a positive integer n, lb(n), is the
length of the string cb(n). For example, lb(5) = 3, lb(45) = 6.

The standard binary representation cb(n) is not a uniquely decodeable code
for integers since there is no way of knowing when an integer has ended. For
example, cb(5)cb(5) is identical to cb(45). It would be uniquely decodeable if
we knew the standard binary length of each integer before it was received.

Noticing that all positive integers have a standard binary representation
that starts with a 1, we might define another representation:

The headless binary representation of a positive integer n will be de-
noted by cB(n), e.g., cB(5) = 01, cB(45) = 01101 and cB(1) = λ (where
λ denotes the null string).

This representation would be uniquely decodeable if we knew the length lb(n)
of the integer.

So, how can we make a uniquely decodeable code for integers? Two strate-
gies can be distinguished.

1. Self-delimiting codes. We first communicate somehow the length of
the integer, lb(n), which is also a positive integer; then communicate the
original integer n itself using cB(n).

2. Codes with ‘end of file’ characters. We code the integer into blocks
of length b bits, and reserve one of the 2b symbols to have the special
meaning ‘end of file’. The coding of integers into blocks is arranged so
that this reserved symbol is not needed for any other purpose.

The simplest uniquely decodeable code for integers is the unary code, which
can be viewed as a code with an end of file character.

132

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

7 — Codes for Integers 133

Unary code. An integer n is encoded by sending a string of n−1 0s followed
by a 1.

n cU(n)

1 1

2 01

3 001

4 0001

5 00001

...
45 001

The unary code has length lU(n) = n.

The unary code is the optimal code for integers if the probability distri-
bution over n is pU(n) = 2−n.

Self-delimiting codes

We can use the unary code to encode the length of the binary encoding of n
and make a self-delimiting code:

Code Cα. We send the unary code for lb(n), followed by the headless binary
representation of n.

cα(n) = cU[lb(n)]cB(n). (7.1)

Table 7.1 shows the codes for some integers. The overlining indicates
the division of each string into the parts cU[lb(n)] and cB(n). We might

n cb(n) lb(n) cα(n)

1 1 1 1

2 10 2 010

3 11 2 011

4 100 3 00100

5 101 3 00101

6 110 3 00110

...
45 101101 6 00000101101

Table 7.1. Cα.

equivalently view cα(n) as consisting of a string of (lb(n) − 1) zeroes
followed by the standard binary representation of n, cb(n).

The codeword cα(n) has length lα(n) = 2lb(n) − 1.

The implicit probability distribution over n for the code Cα is separable
into the product of a probability distribution over the length l,

P (l) = 2−l, (7.2)

and a uniform distribution over integers having that length,

P (n | l) =

{

2−l+1 lb(n) = l
0 otherwise.

(7.3)

Now, for the above code, the header that communicates the length always
occupies the same number of bits as the standard binary representation of
the integer (give or take one). If we are expecting to encounter large integers
(large files) then this representation seems suboptimal, since it leads to all files
occupying a size that is double their original uncoded size. Instead of using
the unary code to encode the length lb(n), we could use Cα.

n cβ(n) cγ(n)

1 1 1

2 0100 01000

3 0101 01001

4 01100 010100

5 01101 010101

6 01110 010110

...
45 0011001101 0111001101

Table 7.2. Cβ and Cγ .

Code Cβ. We send the length lb(n) using Cα, followed by the headless binary
representation of n.

cβ(n) = cα[lb(n)]cB(n). (7.4)

Iterating this procedure, we can define a sequence of codes.

Code Cγ .
cγ(n) = cβ[lb(n)]cB(n). (7.5)

Code Cδ.
cδ(n) = cγ [lb(n)]cB(n). (7.6)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

134 7 — Codes for Integers

Codes with end-of-file symbols

We can also make byte-based representations. (Let’s use the term byte flexibly
here, to denote any fixed-length string of bits, not just a string of length 8
bits.) If we encode the number in some base, for example decimal, then we
can represent each digit in a byte. In order to represent a digit from 0 to 9 in a
byte we need four bits. Because 24 = 16, this leaves 6 extra four-bit symbols,
{1010, 1011, 1100, 1101, 1110, 1111}, that correspond to no decimal digit.
We can use these as end-of-file symbols to indicate the end of our positive
integer.

Clearly it is redundant to have more than one end-of-file symbol, so a more
efficient code would encode the integer into base 15, and use just the sixteenth
symbol, 1111, as the punctuation character. Generalizing this idea, we can
make similar byte-based codes for integers in bases 3 and 7, and in any base
of the form 2n − 1.

n c3(n) c7(n)

1 01 11 001 111

2 10 11 010 111

3 01 00 11 011 111

...
45 01 10 00 00 11 110 011 111

Table 7.3. Two codes with
end-of-file symbols, C3 and C7.
Spaces have been included to
show the byte boundaries.

These codes are almost complete. (Recall that a code is ‘complete’ if it
satisfies the Kraft inequality with equality.) The codes’ remaining inefficiency
is that they provide the ability to encode the integer zero and the empty string,
neither of which was required.

. Exercise 7.1.[2, p.136] Consider the implicit probability distribution over inte-
gers corresponding to the code with an end-of-file character.

(a) If the code has eight-bit blocks (i.e., the integer is coded in base
255), what is the mean length in bits of the integer, under the
implicit distribution?

(b) If one wishes to encode binary files of expected size about one hun-
dred kilobytes using a code with an end-of-file character, what is
the optimal block size?

Encoding a tiny file

To illustrate the codes we have discussed, we now use each code to encode a
small file consisting of just 14 characters,

Claude Shannon .

• If we map the ASCII characters onto seven-bit symbols (e.g., in decimal,
C = 67, l = 108, etc.), this 14 character file corresponds to the integer

n = 167 987 786 364 950 891 085 602 469 870 (decimal).

• The unary code for n consists of this many (less one) zeroes, followed by
a one. If all the oceans were turned into ink, and if we wrote a hundred
bits with every cubic millimeter, there might be enough ink to write
cU(n).

• The standard binary representation of n is this length-98 sequence of
bits:

cb(n) = 1000011110110011000011110101110010011001010100000

1010011110100011000011101110110111011011111101110.

. Exercise 7.2.[2] Write down or describe the following self-delimiting represen-
tations of the above number n: cα(n), cβ(n), cγ(n), cδ(n), c3(n), c7(n),
and c15(n). Which of these encodings is the shortest? [Answer: c15.]

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

7 — Codes for Integers 135

Comparing the codes

One could answer the question ‘which of two codes is superior?’ by a sentence
of the form ‘For n > k, code 1 is superior, for n < k, code 2 is superior’ but I
contend that such an answer misses the point: any complete code corresponds
to a prior for which it is optimal; you should not say that any other code is
superior to it. Other codes are optimal for other priors. These implicit priors
should be thought about so as to achieve the best code for one’s application.

Notice that one cannot, for free, switch from one code to another, choosing
whichever is shorter. If one were to do this, then it would be necessary to
lengthen the message in some way that indicates which of the two codes is
being used. If this is done by a single leading bit, it will be found that the
resulting code is suboptimal because it fails the Kraft equality, as was discussed
in exercise 5.33 (p.104).

Another way to compare codes for integers is to consider a sequence of
probability distributions, such as monotonic probability distributions over n ≥
1, and rank the codes as to how well they encode any of these distributions.
A code is called a ‘universal’ code if for any distribution in a given class, it
encodes into an average length that is within some factor of the ideal average
length.

Let me say this again. We are meeting an alternative world view – rather
than figuring out a good prior over integers, as advocated above, many the-
orists have studied the problem of creating codes that are reasonably good
codes for any priors in a broad class. Here the class of priors convention-
ally considered is the set of priors that (a) assign a monotonically decreasing
probability over integers and (b) have finite entropy.

Several of the codes we have discussed above are universal. Another code
which elegantly transcends the sequence of self-delimiting codes is Elias’s ‘uni-
versal code for integers’ (Elias, 1975), which effectively chooses from all the
codes Cα, Cβ , It works by sending a sequence of messages each of which
encodes the length of the next message, and indicates by a single bit whether
or not that message is the final integer (in its standard binary representation).
Because a length is a positive integer and all positive integers begin with ‘1’,
all the leading 1s can be omitted.

Write ‘0’
Loop {

If blog nc = 0 halt
Prepend cb(n) to the written string
n:=blog nc

}

Algorithm 7.4. Elias’s encoder for
an integer n.

The encoder of Cω is shown in algorithm 7.4. The encoding is generated
from right to left. Table 7.5 shows the resulting codewords.

. Exercise 7.3.[2] Show that the Elias code is not actually the best code for a
prior distribution that expects very large integers. (Do this by construct-
ing another code and specifying how large n must be for your code to
give a shorter length than Elias’s.)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

136 7 — Codes for Integers

n cω(n) n cω(n) n cω(n) n cω(n)

1 0 9 1110010 31 10100111110 256 1110001000000000

2 100 10 1110100 32 101011000000 365 1110001011011010

3 110 11 1110110 45 101011011010 511 1110001111111110

4 101000 12 1111000 63 101011111110 512 11100110000000000

5 101010 13 1111010 64 1011010000000 719 11100110110011110

6 101100 14 1111100 127 1011011111110 1023 11100111111111110

7 101110 15 1111110 128 10111100000000 1024 111010100000000000

8 1110000 16 10100100000 255 10111111111110 1025 111010100000000010

Table 7.5. Elias’s ‘universal’ code
for integers. Examples from 1 to
1025.

Solutions

Solution to exercise 7.1 (p.134). The use of the end-of-file symbol in a code
that represents the integer in some base q corresponds to a belief that there is
a probability of (1/(q + 1)) that the current character is the last character of
the number. Thus the prior to which this code is matched puts an exponential
prior distribution over the length of the integer.

(a) The expected number of characters is q+1 = 256, so the expected length
of the integer is 256 × 8 ' 2000 bits.

(b) We wish to find q such that q log q ' 800 000 bits. A value of q between
215 and 216 satisfies this constraint, so 16-bit blocks are roughly the
optimal size, assuming there is one end-of-file character.

