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158 9 — Communication over a Noisy Channel

H(Y |X) =
∑

x P (x)H(Y |x) = P (x=1)H(Y |x=1) + P (x=0)H(Y |x=0)
so the mutual information is:

I(X;Y ) = H(Y ) − H(Y |X) (9.33)

= H2(0.575) − [0.5 × H2(0.15) + 0.5 × 0] (9.34)

= 0.98 − 0.30 = 0.679 bits. (9.35)

Solution to exercise 9.12 (p.151). By symmetry, the optimal input distribution
is {0.5, 0.5}. Then the capacity is

C = I(X;Y ) = H(Y ) − H(Y |X) (9.36)

= H2(0.5) − H2(f) (9.37)

= 1 − H2(f). (9.38)

Would you like to find the optimal input distribution without invoking sym-
metry? We can do this by computing the mutual information in the general
case where the input ensemble is {p0, p1}:

I(X;Y ) = H(Y ) − H(Y |X) (9.39)

= H2(p0f + p1(1 − f)) − H2(f). (9.40)

The only p-dependence is in the first term H2(p0f + p1(1 − f)), which is
maximized by setting the argument to 0.5. This value is given by setting
p0 = 1/2.

Solution to exercise 9.13 (p.151). Answer 1. By symmetry, the optimal input
distribution is {0.5, 0.5}. The capacity is most easily evaluated by writing the
mutual information as I(X;Y ) = H(X)−H(X |Y ). The conditional entropy
H(X |Y ) is

∑

y P (y)H(X | y); when y is known, x is uncertain only if y = ?,
which occurs with probability f/2+ f/2, so the conditional entropy H(X |Y )
is fH2(0.5).

C = I(X;Y ) = H(X) − H(X |Y ) (9.41)

= H2(0.5) − fH2(0.5) (9.42)

= 1 − f. (9.43)

The binary erasure channel fails a fraction f of the time. Its capacity is
precisely 1 − f , which is the fraction of the time that the channel is reliable.
This result seems very reasonable, but it is far from obvious how to encode
information so as to communicate reliably over this channel.

Answer 2. Alternatively, without invoking the symmetry assumed above, we
can start from the input ensemble {p0, p1}. The probability that y = ? is
p0f + p1f = f , and when we receive y = ?, the posterior probability of x is
the same as the prior probability, so:

I(X;Y ) = H(X) − H(X |Y ) (9.44)

= H2(p1) − fH2(p1) (9.45)

= (1 − f)H2(p1). (9.46)

This mutual information achieves its maximum value of (1−f) when p1 = 1/2.



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

9.9: Solutions 159

Q
1
?
0

0 1

(a)
11
?1
01
1?
??
0?
10
?0
00

0
0

1
0

0
1

1
1

(b)
11
?1
01
1?
??
0?
10
?0
00

0
0

1
0

0
1

1
1

x(1) x(2)

(c)
11
?1
01
1?
??
0?
10
?0
00

0
0

1
0

0
1

1
1

x(1) x(2)

-

-

-

-

-

-

-

m̂ = 2

m̂ = 2

m̂ = 2

m̂ = 1

m̂ = 1

m̂ = 1

m̂ = 0

N = 1 N = 2

Figure 9.10. (a) The extended
channel (N = 2) obtained from a
binary erasure channel with
erasure probability 0.15. (b) A
block code consisting of the two
codewords 00 and 11. (c) The
optimal decoder for this code.

Solution to exercise 9.14 (p.153). The extended channel is shown in fig-
ure 9.10. The best code for this channel with N = 2 is obtained by choosing
two columns that have minimal overlap, for example, columns 00 and 11. The
decoding algorithm returns ‘00’ if the extended channel output is among the
top four and ‘11’ if it’s among the bottom four, and gives up if the output is
‘??’.

Solution to exercise 9.15 (p.155). In example 9.11 (p.151) we showed that the
mutual information between input and output of the Z channel is

I(X;Y ) = H(Y ) − H(Y |X)

= H2(p1(1 − f)) − p1H2(f). (9.47)

We differentiate this expression with respect to p1, taking care not to confuse
log2 with loge:

d

dp1
I(X;Y ) = (1 − f) log2

1 − p1(1 − f)

p1(1 − f)
− H2(f). (9.48)

Setting this derivative to zero and rearranging using skills developed in exer-
cise 2.17 (p.36), we obtain:

p∗1(1 − f) =
1

1 + 2H2(f)/(1−f)
, (9.49)

so the optimal input distribution is

p∗1 =
1/(1 − f)

1 + 2(H2(f)/(1−f))
. (9.50)

As the noise level f tends to 1, this expression tends to 1/e (as you can prove
using L’Hôpital’s rule).

For all values of f, p∗1 is smaller than 1/2. A rough intuition for why input
1 is used less than input 0 is that when input 1 is used, the noisy channel
injects entropy into the received string; whereas when input 0 is used, the
noise has zero entropy.

Solution to exercise 9.16 (p.155). The capacities of the three channels are
shown in figure 9.11. For any f < 0.5, the BEC is the channel with highest
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Figure 9.11. Capacities of the Z
channel, binary symmetric
channel, and binary erasure
channel.

capacity and the BSC the lowest.

Solution to exercise 9.18 (p.155). The logarithm of the posterior probability
ratio, given y, is

a(y) = ln
P (x=1 | y, α, σ)

P (x= − 1 | y, α, σ)
= ln

Q(y |x=1, α, σ)

Q(y |x= − 1, α, σ)
= 2

αy

σ2
. (9.51)
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160 9 — Communication over a Noisy Channel

Using our skills picked up from exercise 2.17 (p.36), we rewrite this in the
form

P (x=1 | y, α, σ) =
1

1 + e−a(y)
. (9.52)

The optimal decoder selects the most probable hypothesis; this can be done
simply by looking at the sign of a(y). If a(y) > 0 then decode as x̂ = 1.

The probability of error is

pb =

∫ 0

−∞

dy Q(y |x=1, α, σ) =

∫

−xα

−∞

dy
1√

2πσ2
e
−

y2

2σ2 = Φ
(

−xα

σ

)

. (9.53)

Random coding

Solution to exercise 9.20 (p.156). The probability that S = 24 people whose
birthdays are drawn at random from A = 365 days all have distinct birthdays
is

A(A − 1)(A − 2) . . . (A − S + 1)

AS
. (9.54)

The probability that two (or more) people share a birthday is one minus this
quantity, which, for S = 24 and A = 365, is about 0.5. This exact way of
answering the question is not very informative since it is not clear for what
value of S the probability changes from being close to 0 to being close to 1.

The number of pairs is S(S − 1)/2, and the probability that a particular
pair shares a birthday is 1/A, so the expected number of collisions is

S(S − 1)

2

1

A
. (9.55)

This answer is more instructive. The expected number of collisions is tiny if
S �

√
A and big if S �

√
A.

We can also approximate the probability that all birthdays are distinct,
for small S, thus:

A(A − 1)(A − 2) . . . (A − S + 1)

AS
= (1)(1 − 1/A)(1 − 2/A) . . . (1 − (S−1)/A)

' exp(0) exp(−1/A) exp(−2/A) . . . exp(−(S−1)/A) (9.56)

' exp

(

− 1

A

S−1
∑

i=1

i

)

= exp

(

−S(S − 1)/2

A

)

. (9.57)


