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About Chapter 10

Before reading Chapter 10, you should have read Chapters 4 and 9. Exer-
cise 9.14 (p.153) is especially recommended.

Cast of characters

Q the noisy channel
C the capacity of the channel
XN an ensemble used to create a random code
C a random code
N the length of the codewords

x(s) a codeword, the sth in the code
s the number of a chosen codeword (mnemonic: the source

selects s)
S = 2K the total number of codewords in the code
K = log2 S the number of bits conveyed by the choice of one codeword

from S, assuming it is chosen with uniform probability
s a binary representation of the number s
R = K/N the rate of the code, in bits per channel use (sometimes called

R′ instead)
ŝ the decoder’s guess of s
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10

The Noisy-Channel Coding Theorem

�
10.1 The theorem

The theorem has three parts, two positive and one negative. The main positive
result is the first.

-
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�
�
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1
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Figure 10.1. Portion of the R, pb

plane to be proved achievable
(1, 2) and not achievable (3).

1. For every discrete memoryless channel, the channel capacity

C = max
PX

I(X;Y ) (10.1)

has the following property. For any ε > 0 and R < C, for large enough N ,
there exists a code of length N and rate ≥ R and a decoding algorithm,
such that the maximal probability of block error is < ε.

2. If a probability of bit error pb is acceptable, rates up to R(pb) are achiev-
able, where

R(pb) =
C

1 − H2(pb)
. (10.2)

3. For any pb, rates greater than R(pb) are not achievable.

�
10.2 Jointly-typical sequences

We formalize the intuitive preview of the last chapter.
We will define codewords x(s) as coming from an ensemble XN , and con-

sider the random selection of one codeword and a corresponding channel out-
put y, thus defining a joint ensemble (XY )N . We will use a typical-set decoder,
which decodes a received signal y as s if x(s) and y are jointly typical, a term
to be defined shortly.

The proof will then centre on determining the probabilities (a) that the
true input codeword is not jointly typical with the output sequence; and (b)
that a false input codeword is jointly typical with the output. We will show
that, for large N , both probabilities go to zero as long as there are fewer than
2NC codewords, and the ensemble X is the optimal input distribution.

Joint typicality. A pair of sequences x,y of length N are defined to be
jointly typical (to tolerance β) with respect to the distribution P (x, y)
if

x is typical of P (x), i.e.,
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y is typical of P (y), i.e.,
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and x,y is typical of P (x,y), i.e.,
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10.2: Jointly-typical sequences 163

The jointly-typical set JNβ is the set of all jointly-typical sequence pairs
of length N .

Example. Here is a jointly-typical pair of length N = 100 for the ensemble
P (x, y) in which P (x) has (p0, p1) = (0.9, 0.1) and P (y |x) corresponds to a
binary symmetric channel with noise level 0.2.

x 1111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

y 0011111111000000000000000000000000000000000000000000000000000000000000000000000000111111111111111111

Notice that x has 10 1s, and so is typical of the probability P (x) (at any
tolerance β); and y has 26 1s, so it is typical of P (y) (because P (y =1) = 0.26);
and x and y differ in 20 bits, which is the typical number of flips for this
channel.

Joint typicality theorem. Let x,y be drawn from the ensemble (XY )N

defined by

P (x,y) =
N
∏

n=1

P (xn, yn).

Then

1. the probability that x,y are jointly typical (to tolerance β) tends
to 1 as N → ∞;

2. the number of jointly-typical sequences |JNβ | is close to 2NH(X,Y ).
To be precise,

|JNβ | ≤ 2N(H(X,Y )+β); (10.3)

3. if x′ ∼ XN and y′ ∼ Y N , i.e., x′ and y′ are independent samples
with the same marginal distribution as P (x,y), then the probability
that (x′,y′) lands in the jointly-typical set is about 2−NI(X;Y ). To
be precise,

P ((x′,y′) ∈ JNβ) ≤ 2−N(I(X;Y )−3β). (10.4)

Proof. The proof of parts 1 and 2 by the law of large numbers follows that
of the source coding theorem in Chapter 4. For part 2, let the pair x, y
play the role of x in the source coding theorem, replacing P (x) there by
the probability distribution P (x, y).

For the third part,

P ((x′,y′) ∈ JNβ) =
∑

(x,y)∈JNβ

P (x)P (y) (10.5)

≤ |JNβ | 2
−N(H(X)−β) 2−N(H(Y )−β) (10.6)

≤ 2N(H(X,Y )+β)−N(H(X)+H(Y )−2β) (10.7)

= 2−N(I(X;Y )−3β). 2 (10.8)

A cartoon of the jointly-typical set is shown in figure 10.2. Two independent
typical vectors are jointly typical with probability

P ((x′,y′) ∈ JNβ) ' 2−N(I(X;Y )) (10.9)

because the total number of independent typical pairs is the area of the dashed
rectangle, 2NH(X)2NH(Y ), and the number of jointly-typical pairs is roughly
2NH(X,Y ), so the probability of hitting a jointly-typical pair is roughly

2NH(X,Y )/2NH(X)+NH(Y ) = 2−NI(X;Y ). (10.10)
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Figure 10.2. The jointly-typical
set. The horizontal direction
represents AN

X , the set of all input
strings of length N . The vertical
direction represents AN

Y , the set of
all output strings of length N .
The outer box contains all
conceivable input–output pairs.
Each dot represents a
jointly-typical pair of sequences
(x,y). The total number of
jointly-typical sequences is about
2NH(X,Y ).

�
10.3 Proof of the noisy-channel coding theorem

Analogy

Imagine that we wish to prove that there is a baby in a class of one hundred
babies who weighs less than 10 kg. Individual babies are difficult to catch and
weigh. Shannon’s method of solving the task is to scoop up all the babies

Figure 10.3. Shannon’s method for
proving one baby weighs less than
10 kg.

and weigh them all at once on a big weighing machine. If we find that their
average weight is smaller than 10 kg, there must exist at least one baby who
weighs less than 10 kg – indeed there must be many! Shannon’s method isn’t
guaranteed to reveal the existence of an underweight child, since it relies on
there being a tiny number of elephants in the class. But if we use his method
and get a total weight smaller than 1000 kg then our task is solved.

From skinny children to fantastic codes

We wish to show that there exists a code and a decoder having small prob-
ability of error. Evaluating the probability of error of any particular coding
and decoding system is not easy. Shannon’s innovation was this: instead of
constructing a good coding and decoding system and evaluating its error prob-
ability, Shannon calculated the average probability of block error of all codes,
and proved that this average is small. There must then exist individual codes
that have small probability of block error.

Random coding and typical-set decoding

Consider the following encoding–decoding system, whose rate is R ′.

1. We fix P (x) and generate the S = 2NR′

codewords of a (N,NR′) =
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ŝ(yb) = 3
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Figure 10.4. (a) A random code.
(b) Example decodings by the
typical set decoder. A sequence
that is not jointly typical with any
of the codewords, such as ya, is
decoded as ŝ = 0. A sequence that
is jointly typical with codeword
x(3) alone, yb, is decoded as ŝ = 3.
Similarly, yc is decoded as ŝ = 4.
A sequence that is jointly typical
with more than one codeword,
such as yd, is decoded as ŝ = 0.

(N,K) code C at random according to

P (x) =
N
∏

n=1

P (xn). (10.11)

A random code is shown schematically in figure 10.4a.

2. The code is known to both sender and receiver.

3. A message s is chosen from {1, 2, . . . , 2NR′

}, and x(s) is transmitted. The
received signal is y, with

P (y |x(s)) =

N
∏

n=1

P (yn |x
(s)
n ). (10.12)

4. The signal is decoded by typical-set decoding.

Typical-set decoding. Decode y as ŝ if (x(ŝ),y) are jointly typical and

there is no other s′ such that (x(s′),y) are jointly typical;
otherwise declare a failure (ŝ=0).

This is not the optimal decoding algorithm, but it will be good enough,
and easier to analyze. The typical-set decoder is illustrated in fig-
ure 10.4b.

5. A decoding error occurs if ŝ 6= s.

There are three probabilities of error that we can distinguish. First, there
is the probability of block error for a particular code C, that is,

pB(C) ≡ P (ŝ 6= s | C). (10.13)

This is a difficult quantity to evaluate for any given code.
Second, there is the average over all codes of this block error probability,

〈pB〉 ≡
∑

C

P (ŝ 6= s | C)P (C). (10.14)
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166 10 — The Noisy-Channel Coding Theorem

Fortunately, this quantity is much easier to evaluate than the first quantity
P (ŝ 6= s | C). 〈pB〉 is just the probability that

there is a decoding error at step 5
of the five-step process on the
previous page.

Third, the maximal block error probability of a code C,

pBM(C) ≡ max
s

P (ŝ 6= s | s, C), (10.15)

is the quantity we are most interested in: we wish to show that there exists a
code C with the required rate whose maximal block error probability is small.

We will get to this result by first finding the average block error probability,
〈pB〉. Once we have shown that this can be made smaller than a desired small
number, we immediately deduce that there must exist at least one code C
whose block error probability is also less than this small number. Finally,
we show that this code, whose block error probability is satisfactorily small
but whose maximal block error probability is unknown (and could conceivably
be enormous), can be modified to make a code of slightly smaller rate whose
maximal block error probability is also guaranteed to be small. We modify
the code by throwing away the worst 50% of its codewords.

We therefore now embark on finding the average probability of block error.

Probability of error of typical-set decoder

There are two sources of error when we use typical-set decoding. Either (a)
the output y is not jointly typical with the transmitted codeword x(s), or (b)
there is some other codeword in C that is jointly typical with y.

By the symmetry of the code construction, the average probability of error
averaged over all codes does not depend on the selected value of s; we can
assume without loss of generality that s = 1.

(a) The probability that the input x(1) and the output y are not jointly
typical vanishes, by the joint typicality theorem’s first part (p.163). We give a
name, δ, to the upper bound on this probability, satisfying δ → 0 as N → ∞;
for any desired δ, we can find a blocklength N(δ) such that the P ((x(1),y) 6∈
JNβ) ≤ δ.

(b) The probability that x(s′) and y are jointly typical, for a given s′ 6= 1
is ≤ 2−N(I(X;Y )−3β), by part 3. And there are (2NR′

− 1) rival values of s′ to
worry about.

Thus the average probability of error 〈pB〉 satisfies:

〈pB〉 ≤ δ +

2NR
′

∑

s′=2

2−N(I(X;Y )−3β) (10.16)

≤ δ + 2−N(I(X;Y )−R′−3β). (10.17)

The inequality (10.16) that bounds a total probability of error PTOT by the
sum of the probabilities Ps′ of all sorts of events s′ each of which is sufficient
to cause error,

PTOT ≤ P1 + P2 + · · · ,

is called a union bound. It is only an equality if the different events that cause
error never occur at the same time as each other.

The average probability of error (10.17) can be made < 2δ by increasing N if

R′ < I(X;Y ) − 3β. (10.18)

We are almost there. We make three modifications:

1. We choose P (x) in the proof to be the optimal input distribution of the
channel. Then the condition R′ < I(X;Y ) − 3β becomes R′ < C − 3β.
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10.4: Communication (with errors) above capacity 167

⇒
(a) A random code . . . (b) expurgated

Figure 10.5. How expurgation
works. (a) In a typical random
code, a small fraction of the
codewords are involved in
collisions – pairs of codewords are
sufficiently close to each other
that the probability of error when
either codeword is transmitted is
not tiny. We obtain a new code
from a random code by deleting
all these confusable codewords.
(b) The resulting code has slightly
fewer codewords, so has a slightly
lower rate, and its maximal
probability of error is greatly
reduced.

2. Since the average probability of error over all codes is < 2δ, there must
exist a code with mean probability of block error pB(C) < 2δ.

3. To show that not only the average but also the maximal probability of
error, pBM, can be made small, we modify this code by throwing away
the worst half of the codewords – the ones most likely to produce errors.
Those that remain must all have conditional probability of error less
than 4δ. We use these remaining codewords to define a new code. This
new code has 2NR′−1 codewords, i.e., we have reduced the rate from R′

to R′−1/N (a negligible reduction, if N is large), and achieved pBM < 4δ.
This trick is called expurgation (figure 10.5). The resulting code may
not be the best code of its rate and length, but it is still good enough to
prove the noisy-channel coding theorem, which is what we are trying to
do here.

In conclusion, we can ‘construct’ a code of rate R′ − 1/N , where R′ < C − 3β,
with maximal probability of error < 4δ. We obtain the theorem as stated by
setting R′ = (R + C)/2, δ = ε/4, β < (C − R′)/3, and N sufficiently large for
the remaining conditions to hold. The theorem’s first part is thus proved. 2

�
10.4 Communication (with errors) above capacity

-

6

C
R

pb

achievable

Figure 10.6. Portion of the R, pb

plane proved achievable in the
first part of the theorem. [We’ve
proved that the maximal
probability of block error pBM can
be made arbitrarily small, so the
same goes for the bit error
probability pb, which must be
smaller than pBM.]

We have proved, for any discrete memoryless channel, the achievability of a
portion of the R, pb plane shown in figure 10.6. We have shown that we can
turn any noisy channel into an essentially noiseless binary channel with rate
up to C bits per cycle. We now extend the right-hand boundary of the region
of achievability at non-zero error probabilities. [This is called rate-distortion
theory.]

We do this with a new trick. Since we know we can make the noisy channel
into a perfect channel with a smaller rate, it is sufficient to consider commu-
nication with errors over a noiseless channel. How fast can we communicate
over a noiseless channel, if we are allowed to make errors?

Consider a noiseless binary channel, and assume that we force communi-
cation at a rate greater than its capacity of 1 bit. For example, if we require
the sender to attempt to communicate at R=2 bits per cycle then he must
effectively throw away half of the information. What is the best way to do
this if the aim is to achieve the smallest possible probability of bit error? One
simple strategy is to communicate a fraction 1/R of the source bits, and ignore
the rest. The receiver guesses the missing fraction 1 − 1/R at random, and
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168 10 — The Noisy-Channel Coding Theorem

the average probability of bit error is

pb =
1

2
(1 − 1/R). (10.19)

The curve corresponding to this strategy is shown by the dashed line in fig-
ure 10.7.

We can do better than this (in terms of minimizing pb) by spreading out
the risk of corruption evenly among all the bits. In fact, we can achieve
pb = H−1

2 (1− 1/R), which is shown by the solid curve in figure 10.7. So, how

pb

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2 2.5

Optimum
Simple

R

Figure 10.7. A simple bound on
achievable points (R, pb), and
Shannon’s bound.

can this optimum be achieved?
We reuse a tool that we just developed, namely the (N,K) code for a

noisy channel, and we turn it on its head, using the decoder to define a lossy
compressor. Specifically, we take an excellent (N,K) code for the binary
symmetric channel. Assume that such a code has a rate R′ = K/N , and that
it is capable of correcting errors introduced by a binary symmetric channel
whose transition probability is q. Asymptotically, rate-R′ codes exist that
have R′ ' 1−H2(q). Recall that, if we attach one of these capacity-achieving
codes of length N to a binary symmetric channel then (a) the probability
distribution over the outputs is close to uniform, since the entropy of the
output is equal to the entropy of the source (NR′) plus the entropy of the
noise (NH2(q)), and (b) the optimal decoder of the code, in this situation,
typically maps a received vector of length N to a transmitted vector differing
in qN bits from the received vector.

We take the signal that we wish to send, and chop it into blocks of length N
(yes, N , not K). We pass each block through the decoder, and obtain a shorter
signal of length K bits, which we communicate over the noiseless channel. To
decode the transmission, we pass the K bit message to the encoder of the
original code. The reconstituted message will now differ from the original
message in some of its bits – typically qN of them. So the probability of bit
error will be pb = q. The rate of this lossy compressor is R = N/K = 1/R′ =
1/(1 − H2(pb)).

Now, attaching this lossy compressor to our capacity-C error-free commu-
nicator, we have proved the achievability of communication up to the curve
(pb, R) defined by:

R =
C

1 − H2(pb)
. 2 (10.20)

For further reading about rate-distortion theory, see Gallager (1968), p. 451,
or McEliece (2002), p. 75.

�
10.5 The non-achievable region (part 3 of the theorem)

The source, encoder, noisy channel and decoder define a Markov chain: s → x → y → ŝ

P (s,x,y, ŝ) = P (s)P (x | s)P (y |x)P (ŝ |y). (10.21)

The data processing inequality (exercise 8.9, p.141) must apply to this chain:
I(s; ŝ) ≤ I(x;y). Furthermore, by the definition of channel capacity, I(x;y) ≤
NC, so I(s; ŝ) ≤ NC.

Assume that a system achieves a rate R and a bit error probability pb;
then the mutual information I(s; ŝ) is ≥ NR(1 − H2(pb)). But I(s; ŝ) > NC
is not achievable, so R > C

1−H2(pb)
is not achievable. 2

Exercise 10.1.[3 ] Fill in the details in the preceding argument. If the bit errors
between ŝ and s are independent then we have I(s; ŝ) = NR(1−H2(pb)).
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What if we have complex correlations among those bit errors? Why does
the inequality I(s; ŝ) ≥ NR(1 − H2(pb)) hold?

�
10.6 Computing capacity

We have proved that the capacity of a channel is the maximum rate at which Sections 10.6–10.8 contain
advanced material. The first-time
reader is encouraged to skip to
section 10.9 (p.172).

reliable communication can be achieved. How can we compute the capacity of
a given discrete memoryless channel? We need to find its optimal input distri-
bution. In general we can find the optimal input distribution by a computer
search, making use of the derivative of the mutual information with respect
to the input probabilities.

. Exercise 10.2.[2 ] Find the derivative of I(X;Y ) with respect to the input prob-
ability pi, ∂I(X;Y )/∂pi, for a channel with conditional probabilities Qj|i.

Exercise 10.3.[2 ] Show that I(X;Y ) is a concave_ function of the input prob-
ability vector p.

Since I(X;Y ) is concave_ in the input distribution p, any probability distri-
bution p at which I(X;Y ) is stationary must be a global maximum of I(X;Y ).
So it is tempting to put the derivative of I(X;Y ) into a routine that finds a
local maximum of I(X;Y ), that is, an input distribution P (x) such that

∂I(X;Y )

∂pi

= λ for all i, (10.22)

where λ is a Lagrange multiplier associated with the constraint
∑

i pi = 1.
However, this approach may fail to find the right answer, because I(X;Y )
might be maximized by a distribution that has pi =0 for some inputs. A
simple example is given by the ternary confusion channel.

Ternary confusion channel. AX = {0, ?, 1}. AY ={0, 1}.

-

-
���
@@R1

0

1

0
?

P (y =0 |x=0) = 1 ;
P (y =1 |x=0) = 0 ;

P (y =0 |x= ?) = 1/2 ;
P (y =1 |x= ?) = 1/2 ;

P (y =0 |x=1) = 0 ;
P (y =1 |x=1) = 1.

Whenever the input ? is used, the output is random; the other inputs
are reliable inputs. The maximum information rate of 1 bit is achieved
by making no use of the input ?.

. Exercise 10.4.[2, p.173] Sketch the mutual information for this channel as a
function of the input distribution p. Pick a convenient two-dimensional
representation of p.

The optimization routine must therefore take account of the possibility that,
as we go up hill on I(X;Y ), we may run into the inequality constraints pi ≥ 0.

. Exercise 10.5.[2, p.174] Describe the condition, similar to equation (10.22), that
is satisfied at a point where I(X;Y ) is maximized, and describe a com-
puter program for finding the capacity of a channel.
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Results that may help in finding the optimal input distribution

1. All outputs must be used.

2. I(X;Y ) is a convex^ function of the channel parameters. Reminder: The term ‘convex ^’
means ‘convex’, and the term
‘concave _’ means ‘concave’; the
little smile and frown symbols are
included simply to remind you
what convex and concave mean.

3. There may be several optimal input distributions, but they all look the
same at the output.

. Exercise 10.6.[2 ] Prove that no output y is unused by an optimal input distri-
bution, unless it is unreachable, that is, has Q(y |x) = 0 for all x.

Exercise 10.7.[2 ] Prove that I(X;Y ) is a convex^ function of Q(y |x).

Exercise 10.8.[2 ] Prove that all optimal input distributions of a channel have
the same output probability distribution P (y) =

∑

x P (x)Q(y |x).

These results, along with the fact that I(X;Y ) is a concave_ function of
the input probability vector p, prove the validity of the symmetry argument
that we have used when finding the capacity of symmetric channels. If a
channel is invariant under a group of symmetry operations – for example,
interchanging the input symbols and interchanging the output symbols – then,
given any optimal input distribution that is not symmetric, i.e., is not invariant
under these operations, we can create another input distribution by averaging
together this optimal input distribution and all its permuted forms that we
can make by applying the symmetry operations to the original optimal input
distribution. The permuted distributions must have the same I(X;Y ) as the
original, by symmetry, so the new input distribution created by averaging
must have I(X;Y ) bigger than or equal to that of the original distribution,
because of the concavity of I.

Symmetric channels

In order to use symmetry arguments, it will help to have a definition of a
symmetric channel. I like Gallager’s (1968) definition.

A discrete memoryless channel is a symmetric channel if the set of
outputs can be partitioned into subsets in such a way that for each
subset the matrix of transition probabilities has the property that each
row (if more than 1) is a permutation of each other row and each column
is a permutation of each other column.

Example 10.9. This channel

P (y =0 |x=0) = 0.7 ;
P (y =? |x=0) = 0.2 ;
P (y =1 |x=0) = 0.1 ;

P (y =0 |x=1) = 0.1 ;
P (y =? |x=1) = 0.2 ;
P (y =1 |x=1) = 0.7.

(10.23)

is a symmetric channel because its outputs can be partitioned into (0, 1)
and ?, so that the matrix can be rewritten:

P (y =0 |x=0) = 0.7 ;
P (y =1 |x=0) = 0.1 ;

P (y =0 |x=1) = 0.1 ;
P (y =1 |x=1) = 0.7 ;

P (y =? |x=0) = 0.2 ; P (y =? |x=1) = 0.2.

(10.24)
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Symmetry is a useful property because, as we will see in a later chapter,
communication at capacity can be achieved over symmetric channels by linear

codes.

Exercise 10.10.[2 ] Prove that for a symmetric channel with any number of
inputs, the uniform distribution over the inputs is an optimal input
distribution.

. Exercise 10.11.[2, p.174] Are there channels that are not symmetric whose op-
timal input distributions are uniform? Find one, or prove there are
none.

�
10.7 Other coding theorems

The noisy-channel coding theorem that we proved in this chapter is quite gen-
eral, applying to any discrete memoryless channel; but it is not very specific.
The theorem only says that reliable communication with error probability ε
and rate R can be achieved by using codes with sufficiently large blocklength
N . The theorem does not say how large N needs to be to achieve given values
of R and ε.

Presumably, the smaller ε is and the closer R is to C, the larger N has to
be.

Er(R)

R
C

Figure 10.8. A typical
random-coding exponent.

Noisy-channel coding theorem – version with explicit N-dependence

For a discrete memoryless channel, a blocklength N and a rate R,
there exist block codes of length N whose average probability of
error satisfies:

pB ≤ exp [−NEr(R)] (10.25)

where Er(R) is the random-coding exponent of the channel, a
convex^, decreasing, positive function of R for 0 ≤ R < C. The
random-coding exponent is also known as the reliability function.

[By an expurgation argument it can also be shown that there exist
block codes for which the maximal probability of error pBM is also
exponentially small in N .]

The definition of Er(R) is given in Gallager (1968), p. 139. Er(R) approaches
zero as R → C; the typical behaviour of this function is illustrated in fig-
ure 10.8. The computation of the random-coding exponent for interesting
channels is a challenging task on which much effort has been expended. Even
for simple channels like the binary symmetric channel, there is no simple ex-
pression for Er(R).

Lower bounds on the error probability as a function of blocklength

The theorem stated above asserts that there are codes with pB smaller than
exp [−NEr(R)]. But how small can the error probability be? Could it be
much smaller?

For any code with blocklength N on a discrete memoryless channel,
the probability of error assuming all source messages are used with
equal probability satisfies

pB � exp[−NEsp(R)], (10.26)
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where the function Esp(R), the sphere-packing exponent of the
channel, is a convex^, decreasing, positive function of R for 0 ≤
R < C.

For a precise statement of this result and further references, see Gallager
(1968), p. 157.

�
10.8 Noisy-channel coding theorems and coding practice

Imagine a customer who wants to buy an error-correcting code and decoder
for a noisy channel. The results described above allow us to offer the following
service: if he tells us the properties of his channel, the desired rate R and the
desired error probability pB, we can, after working out the relevant functions
C, Er(R), and Esp(R), advise him that there exists a solution to his problem
using a particular blocklength N ; indeed that almost any randomly chosen
code with that blocklength should do the job. Unfortunately we have not
found out how to implement these encoders and decoders in practice; the cost
of implementing the encoder and decoder for a random code with large N
would be exponentially large in N .

Furthermore, for practical purposes, the customer is unlikely to know ex-
actly what channel he is dealing with. So Berlekamp (1980) suggests that
the sensible way to approach error-correction is to design encoding-decoding
systems and plot their performance on a variety of idealized channels as a
function of the channel’s noise level. These charts (one of which is illustrated
on page 568) can then be shown to the customer, who can choose among the
systems on offer without having to specify what he really thinks his channel
is like. With this attitude to the practical problem, the importance of the
functions Er(R) and Esp(R) is diminished.

�
10.9 Further exercises

Exercise 10.12.[2 ] A binary erasure channel with input x and output y has
transition probability matrix:

Q =





1 − q 0
q q
0 1 − q





1

0

-

-

���

@@R

1

?

0

Find the mutual information I(X;Y ) between the input and output for
general input distribution {p0, p1}, and show that the capacity of this
channel is C = 1 − q bits.

A Z channel has transition probability matrix:

Q =

[

1 q
0 1 − q

]

1

0

-

-

�
���

1

0

Show that, using a (2, 1) code, two uses of a Z channel can be made to
emulate one use of an erasure channel, and state the erasure probability
of that erasure channel. Hence show that the capacity of the Z channel,
CZ, satisfies CZ ≥ 1

2(1 − q) bits.

Explain why the result CZ ≥ 1
2(1 − q) is an inequality rather than an

equality.
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Exercise 10.13.[3, p.174] A transatlantic cable contains N = 20 indistinguish-
able electrical wires. You have the job of figuring out which wire is
which, that is, to create a consistent labelling of the wires at each end.
Your only tools are the ability to connect wires to each other in groups
of two or more, and to test for connectedness with a continuity tester.
What is the smallest number of transatlantic trips you need to make,
and how do you do it?

How would you solve the problem for larger N such as N = 1000?

As an illustration, if N were 3 then the task can be solved in two steps
by labelling one wire at one end a, connecting the other two together,
crossing the Atlantic, measuring which two wires are connected, labelling
them b and c and the unconnected one a, then connecting b to a and
returning across the Atlantic, whereupon on disconnecting b from c, the
identities of b and c can be deduced.

This problem can be solved by persistent search, but the reason it is
posed in this chapter is that it can also be solved by a greedy approach
based on maximizing the acquired information. Let the unknown per-
mutation of wires be x. Having chosen a set of connections of wires C at
one end, you can then make measurements at the other end, and these
measurements y convey information about x. How much? And for what
set of connections is the information that y conveys about x maximized?

�
10.10 Solutions

Solution to exercise 10.4 (p.169). If the input distribution is p = (p0, p?, p1),

-

-
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0

1

0

?

the mutual information is

I(X;Y ) = H(Y ) − H(Y |X) = H2(p0 + p?/2) − p?. (10.27)

We can build a good sketch of this function in two ways: by careful inspection
of the function, or by looking at special cases.

For the plots, the two-dimensional representation of p I will use has p0 and
p1 as the independent variables, so that p = (p0, p?, p1) = (p0, (1−p0−p1), p1).

By inspection. If we use the quantities p∗ ≡ p0 + p?/2 and p? as our two
degrees of freedom, the mutual information becomes very simple: I(X;Y ) =
H2(p∗) − p?. Converting back to p0 = p∗ − p?/2 and p1 = 1 − p∗ − p?/2,
we obtain the sketch shown at the left below. This function is like a tunnel
rising up the direction of increasing p0 and p1. To obtain the required plot of
I(X;Y ) we have to strip away the parts of this tunnel that live outside the
feasible simplex of probabilities; we do this by redrawing the surface, showing
only the parts where p0 > 0 and p1 > 0. A full plot of the function is shown
at the right.
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