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174 10 — The Noisy-Channel Coding Theorem

Special cases. In the special case p? = 0, the channel is a noiseless binary
channel, and I(X;Y ) = H2(p0).

In the special case p0 = p1, the term H2(p0 + p?/2) is equal to 1, so
I(X;Y ) = 1 − p?.

In the special case p0 = 0, the channel is a Z channel with error probability
0.5. We know how to sketch that, from the previous chapter (figure 9.3).
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Figure 10.9. Skeleton of the
mutual information for the
ternary confusion channel.

These special cases allow us to construct the skeleton shown in figure 10.9.

Solution to exercise 10.5 (p.169). Necessary and sufficient conditions for p to
maximize I(X;Y ) are

∂I(X;Y )
∂pi

= λ and pi > 0

∂I(X;Y )
∂pi

≤ λ and pi = 0

}

for all i, (10.28)

where λ is a constant related to the capacity by C = λ + log2 e.
This result can be used in a computer program that evaluates the deriva-

tives, and increments and decrements the probabilities pi in proportion to the
differences between those derivatives.

This result is also useful for lazy human capacity-finders who are good
guessers. Having guessed the optimal input distribution, one can simply con-
firm that equation (10.28) holds.

Solution to exercise 10.11 (p.171). We certainly expect nonsymmetric chan-
nels with uniform optimal input distributions to exist, since when inventing a
channel we have I(J − 1) degrees of freedom whereas the optimal input dis-
tribution is just (I − 1)-dimensional; so in the I(J−1)-dimensional space of
perturbations around a symmetric channel, we expect there to be a subspace
of perturbations of dimension I(J − 1)− (I − 1) = I(J − 2) + 1 that leave the
optimal input distribution unchanged.

Here is an explicit example, a bit like a Z channel.
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(10.29)

Solution to exercise 10.13 (p.173). The labelling problem can be solved for
any N > 2 with just two trips, one each way across the Atlantic.

The key step in the information-theoretic approach to this problem is to
write down the information content of one partition, the combinatorial object
that is the connecting together of subsets of wires. If N wires are grouped
together into g1 subsets of size 1, g2 subsets of size 2, . . . , then the number of
such partitions is

Ω =
N !

∏

r

(r!)gr gr!
, (10.30)

and the information content of one such partition is the log of this quantity.
In a greedy strategy we choose the first partition to maximize this information
content.

One game we can play is to maximize this information content with re-
spect to the quantities gr, treated as real numbers, subject to the constraint
∑

r grr = N . Introducing a Lagrange multiplier λ for the constraint, the
derivative is

∂

∂gr

(

log Ω + λ
∑

r

grr

)

= − log r! − log gr + λr, (10.31)
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which, when set to zero, leads to the rather nice expression

gr =
eλr

r!
; (10.32)

the optimal gr is proportional to a Poisson distribution! We can solve for the
Lagrange multiplier by plugging gr into the constraint

∑

r grr = N , which
gives the implicit equation

N = µ eµ, (10.33)

where µ ≡ eλ is a convenient reparameterization of the Lagrange multiplier.
Figure 10.10a shows a graph of µ(N); figure 10.10b shows the deduced non-
integer assignments gr when µ = 2.2, and nearby integers gr = {1, 2, 2, 1, 1}
that motivate setting the first partition to (a)(bc)(de)(fgh)(ijk)(lmno)(pqrst).
This partition produces a random partition at the other end, which has an
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Figure 10.10. Approximate
solution of the cable-labelling
problem using Lagrange
multipliers. (a) The parameter µ
as a function of N ; the value
µ(20) = 2.2 is highlighted. (b)
Non-integer values of the function
gr = µ

r/r! are shown by lines and
integer values of gr motivated by
those non-integer values are
shown by crosses.

information content of log Ω = 40.4 bits, which is a lot more than half the total
information content we need to acquire to infer the transatlantic permutation,
log 20! ' 61 bits. [In contrast, if all the wires are joined together in pairs,
the information content generated is only about 29 bits.] How to choose the
second partition is left to the reader. A Shannonesque approach is appropriate,
picking a random partition at the other end, using the same {gr}; you need
to ensure the two partitions are as unlike each other as possible.

If N 6= 2, 5 or 9, then the labelling problem has solutions that are
particularly simple to implement, called Knowlton–Graham partitions: par-
tition {1, . . . , N} into disjoint sets in two ways A and B, subject to the
condition that at most one element appears both in an A set of cardinal-
ity j and in a B set of cardinality k, for each j and k (Graham, 1966;
Graham and Knowlton, 1968).


