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174 10 — The Noisy-Channel Coding Theorem

Special cases. In the special case p» = 0, the channel is a noiseless binary
channel, and I(X;Y") = Ha(po)-

In the special case py = p1, the term Hs(pg + p2/2) is equal to 1, so
I(X;Y)=1-ps.

In the special case pg = 0, the channel is a Z channel with error probability

05
0.5. We know how to sketch that, from the previous chapter (figure 9.3). f '
These special cases allow us to construct the skeleton shown in figure 10.9. o 05
0
0 05 Do 1

Solution to exercise 10.5 (p.169). Necessary and sufficient conditions for p to

maximize I(X;Y') are Figure 10.9. Skeleton of the

OIXY)  _ \ and pi >0 mutual information for the
Op;i g f i 10.28 ternary confusion channel.

AI(X;Y) or all , (10.28)

o~ = A and p;=0

where )\ is a constant related to the capacity by C' = X + log; e.

This result can be used in a computer program that evaluates the deriva-
tives, and increments and decrements the probabilities p; in proportion to the
differences between those derivatives.

This result is also useful for lazy human capacity-finders who are good
guessers. Having guessed the optimal input distribution, one can simply con-
firm that equation (10.28) holds.

Solution to exercise 10.11 (p.171). We certainly expect nonsymmetric chan-
nels with uniform optimal input distributions to exist, since when inventing a
channel we have I(J — 1) degrees of freedom whereas the optimal input dis-
tribution is just (I — 1)-dimensional; so in the I(J—1)-dimensional space of
perturbations around a symmetric channel, we expect there to be a subspace
of perturbations of dimension I(J —1) — (I —1) = I(J —2) + 1 that leave the
optimal input distribution unchanged.
Here is an explicit example, a bit like a Z channel.

0.9585 0.0415 0.35 0.0

_ | 0.0415 0.9585 0.0 0.35
Q= 0 0 0.65 O

0 0 0 0.65

(10.29)

Solution to exercise 10.13 (p.173).  The labelling problem can be solved for
any N > 2 with just two trips, one each way across the Atlantic.

The key step in the information-theoretic approach to this problem is to
write down the information content of one partition, the combinatorial object
that is the connecting together of subsets of wires. If N wires are grouped
together into g7 subsets of size 1, gy subsets of size 2, ..., then the number of

such partitions is

N!
Q== (10.30)

H (r1)9r gl

-
and the information content of one such partition is the log of this quantity.
In a greedy strategy we choose the first partition to maximize this information
content.

One game we can play is to maximize this information content with re-
spect to the quantities g,, treated as real numbers, subject to the constraint
>, 9r = N. Introducing a Lagrange multiplier A for the constraint, the
derivative is

% <logQ +A Zgﬂ) = —logr! —log g, + Ar, (10.31)
r T



10.10: Solutions

which, when set to zero, leads to the rather nice expression

e)\r

—; (10.32)

gr = r!

the optimal g, is proportional to a Poisson distribution! We can solve for the
Lagrange multiplier by plugging ¢, into the constraint )" g,r = N, which
gives the implicit equation

N = et (10.33)

where ;1 = e is a convenient reparameterization of the Lagrange multiplier.

Figure 10.10a shows a graph of u(N); figure 10.10b shows the deduced non-
integer assignments g, when p = 2.2, and nearby integers g, = {1,2,2,1,1}
that motivate setting the first partition to (a)(bc)(de)(fgh)(ijk)(lmno)(pqrst).

This partition produces a random partition at the other end, which has an
information content of log 2 = 40.4 bits, which is a lot more than half the total
information content we need to acquire to infer the transatlantic permutation,
log 20! ~ 61bits. [In contrast, if all the wires are joined together in pairs,
the information content generated is only about 29 bits.] How to choose the
second partition is left to the reader. A Shannonesque approach is appropriate,
picking a random partition at the other end, using the same {g,}; you need
to ensure the two partitions are as unlike each other as possible.

If N # 2, 5 or 9, then the labelling problem has solutions that are
particularly simple to implement, called Knowlton-Graham partitions: par-
tition {1,...,N} into disjoint sets in two ways A and B, subject to the
condition that at most one element appears both in an A set of cardinal-
ity j and in a B set of cardinality k, for each j and k (Graham, 1966;
Graham and Knowlton, 1968).
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Figure 10.10. Approximate
solution of the cable-labelling
problem using Lagrange
multipliers. (a) The parameter u
as a function of N; the value
1(20) = 2.2 is highlighted. (b)
Non-integer values of the function
gr = #"/r! are shown by lines and
integer values of g, motivated by
those non-integer values are
shown by crosses.



