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Further Topics in Information Theory
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About Chapter 12

In Chapters 1–11, we concentrated on two aspects of information theory and
coding theory: source coding – the compression of information so as to make
efficient use of data transmission and storage channels; and channel coding –
the redundant encoding of information so as to be able to detect and correct
communication errors.

In both these areas we started by ignoring practical considerations, concen-
trating on the question of the theoretical limitations and possibilities of coding.
We then discussed practical source-coding and channel-coding schemes, shift-
ing the emphasis towards computational feasibility. But the prime criterion
for comparing encoding schemes remained the efficiency of the code in terms
of the channel resources it required: the best source codes were those that
achieved the greatest compression; the best channel codes were those that
communicated at the highest rate with a given probability of error.

In this chapter we now shift our viewpoint a little, thinking of ease of

information retrieval as a primary goal. It turns out that the random codes
which were theoretically useful in our study of channel coding are also useful
for rapid information retrieval.

Efficient information retrieval is one of the problems that brains seem to
solve effortlessly, and content-addressable memory is one of the topics we will
study when we look at neural networks.
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12

Hash Codes: Codes for Efficient

Information Retrieval

�
12.1 The information-retrieval problem

A simple example of an information-retrieval problem is the task of imple-
menting a phone directory service, which, in response to a person’s name,
returns (a) a confirmation that that person is listed in the directory; and (b)
the person’s phone number and other details. We could formalize this prob-
lem as follows, with S being the number of names that must be stored in the
directory.

string length N ' 200
number of strings S ' 223

number of possible 2N ' 2200

strings

Figure 12.1. Cast of characters.

You are given a list of S binary strings of length N bits, {x(1), . . . ,x(S)},
where S is considerably smaller than the total number of possible strings, 2N .
We will call the superscript ‘s’ in x(s) the record number of the string. The
idea is that s runs over customers in the order in which they are added to the
directory and x(s) is the name of customer s. We assume for simplicity that
all people have names of the same length. The name length might be, say,
N = 200 bits, and we might want to store the details of ten million customers,
so S ' 107 ' 223. We will ignore the possibility that two customers have
identical names.

The task is to construct the inverse of the mapping from s to x(s), i.e., to
make a system that, given a string x, returns the value of s such that x = x(s)

if one exists, and otherwise reports that no such s exists. (Once we have the
record number, we can go and look in memory location s in a separate memory
full of phone numbers to find the required number.) The aim, when solving
this task, is to use minimal computational resources in terms of the amount
of memory used to store the inverse mapping from x to s and the amount of
time to compute the inverse mapping. And, preferably, the inverse mapping
should be implemented in such a way that further new strings can be added
to the directory in a small amount of computer time too.

Some standard solutions

The simplest and dumbest solutions to the information-retrieval problem are
a look-up table and a raw list.

The look-up table is a piece of memory of size 2N log2 S, log2 S being the
amount of memory required to store an integer between 1 and S. In
each of the 2N locations, we put a zero, except for the locations x that
correspond to strings x(s), into which we write the value of s.

The look-up table is a simple and quick solution, but only if there is
sufficient memory for the table, and if the cost of looking up entries in
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memory is independent of the memory size. But in our definition of the
task, we assumed that N is about 200 bits or more, so the amount of
memory required would be of size 2200; this solution is completely out
of the question. Bear in mind that the number of particles in the solar
system is only about 2190.

The raw list is a simple list of ordered pairs (s,x(s)) ordered by the value
of s. The mapping from x to s is achieved by searching through the list
of strings, starting from the top, and comparing the incoming string x

with each record x(s) until a match is found. This system is very easy
to maintain, and uses a small amount of memory, about SN bits, but
is rather slow to use, since on average five million pairwise comparisons
will be made.

. Exercise 12.1.[2, p.202] Show that the average time taken to find the required
string in a raw list, assuming that the original names were chosen at
random, is about S + N binary comparisons. (Note that you don’t
have to compare the whole string of length N , since a comparison can
be terminated as soon as a mismatch occurs; show that you need on
average two binary comparisons per incorrect string match.) Compare
this with the worst-case search time – assuming that the devil chooses
the set of strings and the search key.

The standard way in which phone directories are made improves on the look-up
table and the raw list by using an alphabetically-ordered list.

Alphabetical list. The strings {x(s)} are sorted into alphabetical order.
Searching for an entry now usually takes less time than was needed
for the raw list because we can take advantage of the sortedness; for
example, we can open the phonebook at its middle page, and compare
the name we find there with the target string; if the target is ‘greater’
than the middle string then we know that the required string, if it exists,
will be found in the second half of the alphabetical directory. Otherwise,
we look in the first half. By iterating this splitting-in-the-middle proce-
dure, we can identify the target string, or establish that the string is not
listed, in dlog2 Se string comparisons. The expected number of binary
comparisons per string comparison will tend to increase as the search
progresses, but the total number of binary comparisons required will be
no greater than dlog2 SeN .

The amount of memory required is the same as that required for the raw
list.

Adding new strings to the database requires that we insert them in the
correct location in the list. To find that location takes about dlog2 Se
binary comparisons.

Can we improve on the well-established alphabetized list? Let us consider
our task from some new viewpoints.

The task is to construct a mapping x → s from N bits to log2 S bits. This
is a pseudo-invertible mapping, since for any x that maps to a non-zero s, the
customer database contains the pair (s,x(s)) that takes us back. Where have
we come across the idea of mapping from N bits to M bits before?

We encountered this idea twice: first, in source coding, we studied block
codes which were mappings from strings of N symbols to a selection of one
label in a list. The task of information retrieval is similar to the task (which
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we never actually solved) of making an encoder for a typical-set compression
code.

The second time that we mapped bit strings to bit strings of another
dimensionality was when we studied channel codes. There, we considered
codes that mapped from K bits to N bits, with N greater than K, and we
made theoretical progress using random codes.

In hash codes, we put together these two notions. We will study random
codes that map from N bits to M bits where M is smaller than N .

The idea is that we will map the original high-dimensional space down into
a lower-dimensional space, one in which it is feasible to implement the dumb
look-up table method which we rejected a moment ago.

string length N ' 200
number of strings S ' 223

size of hash function M ' 30 bits

size of hash table T = 2M

' 230

Figure 12.2. Revised cast of
characters.

�
12.2 Hash codes

First we will describe how a hash code works, then we will study the properties
of idealized hash codes. A hash code implements a solution to the information-
retrieval problem, that is, a mapping from x to s, with the help of a pseudo-
random function called a hash function, which maps the N -bit string x to an
M -bit string h(x), where M is smaller than N . M is typically chosen such that
the ‘table size’ T ' 2M is a little bigger than S – say, ten times bigger. For
example, if we were expecting S to be about a million, we might map x into
a 30-bit hash h (regardless of the size N of each item x). The hash function
is some fixed deterministic function which should ideally be indistinguishable
from a fixed random code. For practical purposes, the hash function must be
quick to compute.

Two simple examples of hash functions are:

Division method. The table size T is a prime number, preferably one that
is not close to a power of 2. The hash value is the remainder when the
integer x is divided by T .

Variable string addition method. This method assumes that x is a string
of bytes and that the table size T is 256. The characters of x are added,
modulo 256. This hash function has the defect that it maps strings that
are anagrams of each other onto the same hash.

It may be improved by putting the running total through a fixed pseu-
dorandom permutation after each character is added. In the variable

string exclusive-or method with table size ≤ 65 536, the string is hashed
twice in this way, with the initial running total being set to 0 and 1
respectively (algorithm 12.3). The result is a 16-bit hash.

Having picked a hash function h(x), we implement an information retriever
as follows. (See figure 12.4.)

Encoding. A piece of memory called the hash table is created of size 2Mb
memory units, where b is the amount of memory needed to represent an
integer between 0 and S. This table is initially set to zero throughout.
Each memory x(s) is put through the hash function, and at the location
in the hash table corresponding to the resulting vector h(s) = h(x(s)),
the integer s is written – unless that entry in the hash table is already
occupied, in which case we have a collision between x(s) and some earlier
x(s′) which both happen to have the same hash code. Collisions can be
handled in various ways – we will discuss some in a moment – but first
let us complete the basic picture.
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Algorithm 12.3. C code
implementing the variable string
exclusive-or method to create a
hash h in the range 0 . . . 65 535
from a string x. Author: Thomas
Niemann.

unsigned char Rand8[256]; // This array contains a random

permutation from 0..255 to 0..255

int Hash(char *x) { // x is a pointer to the first char;

int h; // *x is the first character

unsigned char h1, h2;

if (*x == 0) return 0; // Special handling of empty string

h1 = *x; h2 = *x + 1; // Initialize two hashes

x++; // Proceed to the next character

while (*x) {

h1 = Rand8[h1 ^ *x]; // Exclusive-or with the two hashes

h2 = Rand8[h2 ^ *x]; // and put through the randomizer

x++;

} // End of string is reached when *x=0

h = ((int)(h1)<<8) | // Shift h1 left 8 bits and add h2

(int) h2 ;

return h ; // Hash is concatenation of h1 and h2

}
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Figure 12.4. Use of hash functions
for information retrieval. For each
string x(s), the hash h = h(x(s))
is computed, and the value of s is
written into the hth row of the
hash table. Blank rows in the
hash table contain the value zero.
The table size is T = 2M .
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Decoding. To retrieve a piece of information corresponding to a target vector
x, we compute the hash h of x and look at the corresponding location
in the hash table. If there is a zero, then we know immediately that the
string x is not in the database. The cost of this answer is the cost of one
hash-function evaluation and one look-up in the table of size 2M . If, on
the other hand, there is a non-zero entry s in the table, there are two
possibilities: either the vector x is indeed equal to x(s); or the vector x(s)

is another vector that happens to have the same hash code as the target
x. (A third possibility is that this non-zero entry might have something
to do with our yet-to-be-discussed collision-resolution system.)

To check whether x is indeed equal to x(s), we take the tentative answer
s, look up x(s) in the original forward database, and compare it bit by
bit with x; if it matches then we report s as the desired answer. This
successful retrieval has an overall cost of one hash-function evaluation,
one look-up in the table of size 2M , another look-up in a table of size
S, and N binary comparisons – which may be much cheaper than the
simple solutions presented in section 12.1.

. Exercise 12.2.[2, p.202] If we have checked the first few bits of x(s) with x and
found them to be equal, what is the probability that the correct entry
has been retrieved, if the alternative hypothesis is that x is actually not
in the database? Assume that the original source strings are random,
and the hash function is a random hash function. How many binary
evaluations are needed to be sure with odds of a billion to one that the
correct entry has been retrieved?

The hashing method of information retrieval can be used for strings x of
arbitrary length, if the hash function h(x) can be applied to strings of any
length.

�
12.3 Collision resolution

We will study two ways of resolving collisions: appending in the table, and
storing elsewhere.

Appending in table

When encoding, if a collision occurs, we continue down the hash table and
write the value of s into the next available location in memory that currently
contains a zero. If we reach the bottom of the table before encountering a
zero, we continue from the top.

When decoding, if we compute the hash code for x and find that the s
contained in the table doesn’t point to an x(s) that matches the cue x, we
continue down the hash table until we either find an s whose x(s) does match
the cue x, in which case we are done, or else encounter a zero, in which case
we know that the cue x is not in the database.

For this method, it is essential that the table be substantially bigger in size
than S. If 2M < S then the encoding rule will become stuck with nowhere to
put the last strings.

Storing elsewhere

A more robust and flexible method is to use pointers to additional pieces of
memory in which collided strings are stored. There are many ways of doing
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this. As an example, we could store in location h in the hash table a pointer
(which must be distinguishable from a valid record number s) to a ‘bucket’
where all the strings that have hash code h are stored in a sorted list. The
encoder sorts the strings in each bucket alphabetically as the hash table and
buckets are created.

The decoder simply has to go and look in the relevant bucket and then
check the short list of strings that are there by a brief alphabetical search.

This method of storing the strings in buckets allows the option of making
the hash table quite small, which may have practical benefits. We may make it
so small that almost all strings are involved in collisions, so all buckets contain
a small number of strings. It only takes a small number of binary comparisons
to identify which of the strings in the bucket matches the cue x.

�
12.4 Planning for collisions: a birthday problem

Exercise 12.3.[2, p.202] If we wish to store S entries using a hash function whose
output has M bits, how many collisions should we expect to happen,
assuming that our hash function is an ideal random function? What
size M of hash table is needed if we would like the expected number of
collisions to be smaller than 1?

What size M of hash table is needed if we would like the expected number
of collisions to be a small fraction, say 1%, of S?

[Notice the similarity of this problem to exercise 9.20 (p.156).]

�
12.5 Other roles for hash codes

Checking arithmetic

If you wish to check an addition that was done by hand, you may find useful
the method of casting out nines. In casting out nines, one finds the sum,
modulo nine, of all the digits of the numbers to be summed and compares
it with the sum, modulo nine, of the digits of the putative answer. [With a
little practice, these sums can be computed much more rapidly than the full
original addition.]

Example 12.4. In the calculation shown in the margin the sum, modulo nine, of 189

+1254

+ 238

1681

the digits in 189+1254+238 is 7, and the sum, modulo nine, of 1+6+8+1
is 7. The calculation thus passes the casting-out-nines test.

Casting out nines gives a simple example of a hash function. For any
addition expression of the form a + b + c + · · ·, where a, b, c, . . . are decimal
numbers we define h ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8} by

h(a + b + c + · · ·) = sum modulo nine of all digits in a, b, c ; (12.1)

then it is nice property of decimal arithmetic that if

a + b + c + · · · = m + n + o + · · · (12.2)

then the hashes h(a + b + c + · · ·) and h(m + n + o + · · ·) are equal.

. Exercise 12.5.[1, p.203] What evidence does a correct casting-out-nines match
give in favour of the hypothesis that the addition has been done cor-
rectly?
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Error detection among friends

Are two files the same? If the files are on the same computer, we could just
compare them bit by bit. But if the two files are on separate machines, it
would be nice to have a way of confirming that two files are identical without
having to transfer one of the files from A to B. [And even if we did transfer one
of the files, we would still like a way to confirm whether it has been received
without modifications!]

This problem can be solved using hash codes. Let Alice and Bob be the
holders of the two files; Alice sent the file to Bob, and they wish to confirm
it has been received without error. If Alice computes the hash of her file and
sends it to Bob, and Bob computes the hash of his file, using the same M -bit
hash function, and the two hashes match, then Bob can deduce that the two
files are almost surely the same.

Example 12.6. What is the probability of a false negative, i.e., the probability,
given that the two files do differ, that the two hashes are nevertheless
identical?

If we assume that the hash function is random and that the process that causes
the files to differ knows nothing about the hash function, then the probability
of a false negative is 2−M . 2

A 32-bit hash gives a probability of false negative of about 10−10. It is
common practice to use a linear hash function called a 32-bit cyclic redundancy
check to detect errors in files. (A cyclic redundancy check is a set of 32 parity-
check bits similar to the 3 parity-check bits of the (7, 4) Hamming code.)

To have a false-negative rate smaller than one in a billion, M = 32
bits is plenty, if the errors are produced by noise.

. Exercise 12.7.[2, p.203] Such a simple parity-check code only detects errors; it
doesn’t help correct them. Since error-correcting codes exist, why not
use one of them to get some error-correcting capability too?

Tamper detection

What if the differences between the two files are not simply ‘noise’, but are
introduced by an adversary, a clever forger called Fiona, who modifies the
original file to make a forgery that purports to be Alice’s file? How can Alice
make a digital signature for the file so that Bob can confirm that no-one has
tampered with the file? And how can we prevent Fiona from listening in on
Alice’s signature and attaching it to other files?

Let’s assume that Alice computes a hash function for the file and sends it
securely to Bob. If Alice computes a simple hash function for the file like the
linear cyclic redundancy check, and Fiona knows that this is the method of
verifying the file’s integrity, Fiona can make her chosen modifications to the
file and then easily identify (by linear algebra) a further 32-or-so single bits
that, when flipped, restore the hash function of the file to its original value.
Linear hash functions give no security against forgers.

We must therefore require that the hash function be hard to invert so that
no-one can construct a tampering that leaves the hash function unaffected.
We would still like the hash function to be easy to compute, however, so that
Bob doesn’t have to do hours of work to verify every file he received. Such
a hash function – easy to compute, but hard to invert – is called a one-way
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hash function. Finding such functions is one of the active research areas of
cryptography.

A hash function that is widely used in the free software community to
confirm that two files do not differ is MD5, which produces a 128-bit hash. The
details of how it works are quite complicated, involving convoluted exclusive-
or-ing and if-ing and and-ing.1

Even with a good one-way hash function, the digital signatures described
above are still vulnerable to attack, if Fiona has access to the hash function.
Fiona could take the tampered file and hunt for a further tiny modification to
it such that its hash matches the original hash of Alice’s file. This would take
some time – on average, about 232 attempts, if the hash function has 32 bits –
but eventually Fiona would find a tampered file that matches the given hash.
To be secure against forgery, digital signatures must either have enough bits
for such a random search to take too long, or the hash function itself must be
kept secret.

Fiona has to hash 2M files to cheat. 232 file modifications is not
very many, so a 32-bit hash function is not large enough for forgery
prevention.

Another person who might have a motivation for forgery is Alice herself.
For example, she might be making a bet on the outcome of a race, without
wishing to broadcast her prediction publicly; a method for placing bets would
be for her to send to Bob the bookie the hash of her bet. Later on, she could
send Bob the details of her bet. Everyone can confirm that her bet is consis-
tent with the previously publicized hash. [This method of secret publication
was used by Isaac Newton and Robert Hooke when they wished to establish
priority for scientific ideas without revealing them. Hooke’s hash function
was alphabetization as illustrated by the conversion of UT TENSIO, SIC VIS

into the anagram CEIIINOSSSTTUV.] Such a protocol relies on the assumption
that Alice cannot change her bet after the event without the hash coming
out wrong. How big a hash function do we need to use to ensure that Alice
cannot cheat? The answer is different from the size of the hash we needed in
order to defeat Fiona above, because Alice is the author of both files. Alice
could cheat by searching for two files that have identical hashes to each other.
For example, if she’d like to cheat by placing two bets for the price of one,
she could make a large number N1 of versions of bet one (differing from each
other in minor details only), and a large number N2 of versions of bet two, and
hash them all. If there’s a collision between the hashes of two bets of different
types, then she can submit the common hash and thus buy herself the option
of placing either bet.

Example 12.8. If the hash has M bits, how big do N1 and N2 need to be for
Alice to have a good chance of finding two different bets with the same
hash?

This is a birthday problem like exercise 9.20 (p.156). If there are N1 Montagues
and N2 Capulets at a party, and each is assigned a ‘birthday’ of M bits, the
expected number of collisions between a Montague and a Capulet is

N1N22
−M , (12.3)

1http://www.freesoft.org/CIE/RFC/1321/3.htm



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

12.6: Further exercises 201

so to minimize the number of files hashed, N1 + N2, Alice should make N1

and N2 equal, and will need to hash about 2M/2 files until she finds two that
match. 2

Alice has to hash 2M/2 files to cheat. [This is the square root of the
number of hashes Fiona had to make.]

If Alice has the use of C = 106 computers for T = 10 years, each computer
taking t = 1ns to evaluate a hash, the bet-communication system is secure
against Alice’s dishonesty only if M � 2 log2 CT/t ' 160 bits.

Further reading

The Bible for hash codes is volume 3 of Knuth (1968). I highly recommend the
story of Doug McIlroy’s spell program, as told in section 13.8 of Programming

Pearls (Bentley, 2000). This astonishing piece of software makes use of a 64-
kilobyte data structure to store the spellings of all the words of 75 000-word
dictionary.

�
12.6 Further exercises

Exercise 12.9.[1 ] What is the shortest the address on a typical international
letter could be, if it is to get to a unique human recipient? (Assume
the permitted characters are [A-Z,0-9].) How long are typical email
addresses?

Exercise 12.10.[2, p.203] How long does a piece of text need to be for you to be
pretty sure that no human has written that string of characters before?
How many notes are there in a new melody that has not been composed
before?

. Exercise 12.11.[3, p.204] Pattern recognition by molecules.

Some proteins produced in a cell have a regulatory role. A regulatory
protein controls the transcription of specific genes in the genome. This
control often involves the protein’s binding to a particular DNA sequence
in the vicinity of the regulated gene. The presence of the bound protein
either promotes or inhibits transcription of the gene.

(a) Use information-theoretic arguments to obtain a lower bound on
the size of a typical protein that acts as a regulator specific to one
gene in the whole human genome. Assume that the genome is a
sequence of 3 × 109 nucleotides drawn from a four letter alphabet
{A, C, G, T}; a protein is a sequence of amino acids drawn from a
twenty letter alphabet. [Hint: establish how long the recognized
DNA sequence has to be in order for that sequence to be unique
to the vicinity of one gene, treating the rest of the genome as a
random sequence. Then discuss how big the protein must be to
recognize a sequence of that length uniquely.]

(b) Some of the sequences recognized by DNA-binding regulatory pro-
teins consist of a subsequence that is repeated twice or more, for
example the sequence

GCCCCCCACCCCTGCCCCC (12.4)
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is a binding site found upstream of the alpha-actin gene in humans.
Does the fact that some binding sites consist of a repeated subse-
quence influence your answer to part (a)?

�
12.7 Solutions

Solution to exercise 12.1 (p.194). First imagine comparing the string x with
another random string x(s). The probability that the first bits of the two
strings match is 1/2. The probability that the second bits match is 1/2. As-
suming we stop comparing once we hit the first mismatch, the expected number
of matches is 1, so the expected number of comparisons is 2 (exercise 2.34,
p.38).

Assuming the correct string is located at random in the raw list, we will
have to compare with an average of S/2 strings before we find it, which costs
2S/2 binary comparisons; and comparing the correct strings takes N binary
comparisons, giving a total expectation of S + N binary comparisons, if the
strings are chosen at random.

In the worst case (which may indeed happen in practice), the other strings
are very similar to the search key, so that a lengthy sequence of comparisons
is needed to find each mismatch. The worst case is when the correct string
is last in the list, and all the other strings differ in the last bit only, giving a
requirement of SN binary comparisons.

Solution to exercise 12.2 (p.197). The likelihood ratio for the two hypotheses,
H0: x(s) = x, and H1: x(s) 6= x, contributed by the datum ‘the first bits of
x(s) and x are equal’ is

P (Datum |H0)

P (Datum |H1)
=

1

1/2
= 2. (12.5)

If the first r bits all match, the likelihood ratio is 2r to one. On finding that
30 bits match, the odds are a billion to one in favour of H0, assuming we start
from even odds. [For a complete answer, we should compute the evidence
given by the prior information that the hash entry s has been found in the
table at h(x). This fact gives further evidence in favour of H0.]

Solution to exercise 12.3 (p.198). Let the hash function have an output al-
phabet of size T = 2M . If M were equal to log2 S then we would have exactly
enough bits for each entry to have its own unique hash. The probability that
one particular pair of entries collide under a random hash function is 1/T . The
number of pairs is S(S − 1)/2. So the expected number of collisions between
pairs is exactly

S(S − 1)/(2T ). (12.6)

If we would like this to be smaller than 1, then we need T > S(S − 1)/2 so

M > 2 log2 S. (12.7)

We need twice as many bits as the number of bits, log2 S, that would be
sufficient to give each entry a unique name.

If we are happy to have occasional collisions, involving a fraction f of the
names S, then we need T > S/f (since the probability that one particular
name is collided-with is f ' S/T ) so

M > log2 S + log2[1/f ], (12.8)


