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About Chapter 13

In Chapters 8–11, we established Shannon’s noisy-channel coding theorem
for a general channel with any input and output alphabets. A great deal of
attention in coding theory focuses on the special case of channels with binary
inputs. Constraining ourselves to these channels simplifies matters, and leads
us into an exceptionally rich world, which we will only taste in this book.

One of the aims of this chapter is to point out a contrast between Shannon’s
aim of achieving reliable communication over a noisy channel and the apparent
aim of many in the world of coding theory. Many coding theorists take as
their fundamental problem the task of packing as many spheres as possible,
with radius as large as possible, into an N -dimensional space, with no spheres

overlapping. Prizes are awarded to people who find packings that squeeze in an
extra few spheres. While this is a fascinating mathematical topic, we shall see
that the aim of maximizing the distance between codewords in a code has only
a tenuous relationship to Shannon’s aim of reliable communication.
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13

Binary Codes

We’ve established Shannon’s noisy-channel coding theorem for a general chan-
nel with any input and output alphabets. A great deal of attention in coding
theory focuses on the special case of channels with binary inputs, the first
implicit choice being the binary symmetric channel.

The optimal decoder for a code, given a binary symmetric channel, finds
the codeword that is closest to the received vector, closest in Hamming dis- Example:

The Hamming distance
between 00001111

and 11001101

is 3.

tance. The Hamming distance between two binary vectors is the number of
coordinates in which the two vectors differ. Decoding errors will occur if the
noise takes us from the transmitted codeword t to a received vector r that
is closer to some other codeword. The distances between codewords are thus
relevant to the probability of a decoding error.

�
13.1 Distance properties of a code

The distance of a code is the smallest separation between two of its codewords.

Example 13.1. The (7, 4) Hamming code (p.8) has distance d = 3. All pairs of
its codewords differ in at least 3 bits. The maximum number of errors
it can correct is t = 1; in general a code with distance d is b(d−1)/2c-
error-correcting.

A more precise term for distance is the minimum distance of the code. The
distance of a code is often denoted by d or dmin.

We’ll now constrain our attention to linear codes. In a linear code, all
codewords have identical distance properties, so we can summarize all the
distances between the code’s codewords by counting the distances from the
all-zero codeword.

The weight enumerator function of a code, A(w), is defined to be the
number of codewords in the code that have weight w. The weight enumerator
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Figure 13.1. The graph of the
(7, 4) Hamming code, and its
weight enumerator function.

function is also known as the distance distribution of the code.

Example 13.2. The weight enumerator functions of the (7, 4) Hamming code
and the dodecahedron code are shown in figures 13.1 and 13.2.

�
13.2 Obsession with distance

Since the maximum number of errors that a code can guarantee to correct,
t, is related to its distance d by t = b(d−1)/2c, many coding theorists focus d = 2t + 1 if d is odd, and

d = 2t + 2 if d is even.on the distance of a code, searching for codes of a given size that have the
biggest possible distance. Much of practical coding theory has focused on
decoders that give the optimal decoding for all error patterns of weight up to
the half-distance t of their codes.
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w A(w)

0 1
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9 20
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11 120
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13 180
14 240
15 272
16 345
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19 120
20 36

Total 2048
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Figure 13.2. The graph defining
the (30, 11) dodecahedron code
(the circles are the 30 transmitted
bits and the triangles are the 20
parity checks, one of which is
redundant) and the weight
enumerator function (solid lines).
The dotted lines show the average
weight enumerator function of all
random linear codes with the
same size of generator matrix,
which will be computed shortly.
The lower figure shows the same
functions on a log scale.

A bounded-distance decoder is a decoder that returns the closest code-
word to a received binary vector r if the distance from r to that codeword
is less than or equal to t; otherwise it returns a failure message.

The rationale for not trying to decode when more than t errors have occurred
might be ‘we can’t guarantee that we can correct more than t errors, so we
won’t bother trying – who would be interested in a decoder that corrects some
error patterns of weight greater than t, but not others?’ This defeatist attitude
is an example of worst-case-ism, a widespread mental ailment which this book
is intended to cure.

The fact is that bounded-distance decoders cannot reach the Shannon limit ∗
of the binary symmetric channel; only a decoder that often corrects more than
t errors can do this. The state of the art in error-correcting codes have decoders
that work way beyond the minimum distance of the code.

Definitions of good and bad distance properties

Given a family of codes of increasing blocklength N , and with rates approach-
ing a limit R > 0, we may be able to put that family in one of the following
categories, which have some similarities to the categories of ‘good’ and ‘bad’
codes defined earlier (p.183):

A sequence of codes has ‘good’ distance if d/N tends to a constant
greater than zero.

A sequence of codes has ‘bad’ distance if d/N tends to zero.

A sequence of codes has ‘very bad’ distance if d tends to a constant.

Figure 13.3. The graph of a
rate-1/2 low-density
generator-matrix code. The
rightmost M of the transmitted
bits are each connected to a single
distinct parity constraint. The
leftmost K transmitted bits are
each connected to a small number
of parity constraints.

Example 13.3. A low-density generator-matrix code is a linear code whose K×
N generator matrix G has a small number d0 of 1s per row, regardless
of how big N is. The minimum distance of such a code is at most d0, so
low-density generator-matrix codes have ‘very bad’ distance.

While having large distance is no bad thing, we’ll see, later on, why an
emphasis on distance can be unhealthy.
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Figure 13.4. Schematic picture of
part of Hamming space perfectly
filled by t-spheres centred on the
codewords of a perfect code.

�
13.3 Perfect codes

A t-sphere (or a sphere of radius t) in Hamming space, centred on a point x,
is the set of points whose Hamming distance from x is less than or equal to t.

The (7, 4) Hamming code has the beautiful property that if we place 1-
spheres about each of its 16 codewords, those spheres perfectly fill Hamming
space without overlapping. As we saw in Chapter 1, every binary vector of
length 7 is within a distance of t = 1 of exactly one codeword of the Hamming
code.

A code is a perfect t-error-correcting code if the set of t-spheres cen-
tred on the codewords of the code fill the Hamming space without over-
lapping. (See figure 13.4.)

Let’s recap our cast of characters. The number of codewords is S = 2K .
The number of points in the entire Hamming space is 2N . The number of
points in a Hamming sphere of radius t is

t
∑

w=0

(

N

w

)

. (13.1)

For a code to be perfect with these parameters, we require S times the number
of points in the t-sphere to equal 2N :

for a perfect code, 2K
t

∑

w=0

(

N

w

)

= 2N (13.2)

or, equivalently,

t
∑

w=0

(

N

w

)

= 2N−K . (13.3)

For a perfect code, the number of noise vectors in one sphere must equal
the number of possible syndromes. The (7, 4) Hamming code satisfies this
numerological condition because

1 +

(

7

1

)

= 23. (13.4)



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

13.3: Perfect codes 209

1 2
. . .

t

1 2
. . .

t

1 2
. . .

t

1 2
. . .

t
Figure 13.5. Schematic picture of
Hamming space not perfectly
filled by t-spheres centred on the
codewords of a code. The grey
regions show points that are at a
Hamming distance of more than t
from any codeword. This is a
misleading picture, as, for any
code with large t in high
dimensions, the grey space
between the spheres takes up
almost all of Hamming space.

How happy we would be to use perfect codes

If there were large numbers of perfect codes to choose from, with a wide
range of blocklengths and rates, then these would be the perfect solution to
Shannon’s problem. We could communicate over a binary symmetric channel
with noise level f , for example, by picking a perfect t-error-correcting code
with blocklength N and t = f ∗N , where f ∗ = f + δ and N and δ are chosen
such that the probability that the noise flips more than t bits is satisfactorily
small.

However, there are almost no perfect codes. The only nontrivial perfect ∗
binary codes are

1. the Hamming codes, which are perfect codes with t = 1 and blocklength
N = 2M − 1, defined below; the rate of a Hamming code approaches 1
as its blocklength N increases;

2. the repetition codes of odd blocklength N , which are perfect codes with
t = (N − 1)/2; the rate of repetition codes goes to zero as 1/N ; and

3. one remarkable 3-error-correcting code with 212 codewords of block-
length N = 23 known as the binary Golay code. [A second 2-error-
correcting Golay code of length N = 11 over a ternary alphabet was dis-
covered by a Finnish football-pool enthusiast called Juhani Virtakallio
in 1947.]

There are no other binary perfect codes. Why this shortage of perfect codes?
Is it because precise numerological coincidences like those satisfied by the
parameters of the Hamming code (13.4) and the Golay code,

1 +

(

23

1

)

+

(

23

2

)

+

(

23

3

)

= 211, (13.5)

are rare? Are there plenty of ‘almost-perfect’ codes for which the t-spheres fill
almost the whole space?

No. In fact, the picture of Hamming spheres centred on the codewords
almost filling Hamming space (figure 13.5) is a misleading one: for most codes,
whether they are good codes or bad codes, almost all the Hamming space is
taken up by the space between t-spheres (which is shown in grey in figure 13.5).

Having established this gloomy picture, we spend a moment filling in the
properties of the perfect codes mentioned above.
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Figure 13.6. Three codewords.

The Hamming codes

The (7, 4) Hamming code can be defined as the linear code whose 3×7 parity-
check matrix contains, as its columns, all the 7 (= 23 − 1) non-zero vectors of
length 3. Since these 7 vectors are all different, any single bit-flip produces a
distinct syndrome, so all single-bit errors can be detected and corrected.

We can generalize this code, with M = 3 parity constraints, as follows. The
Hamming codes are single-error-correcting codes defined by picking a number
of parity-check constraints, M ; the blocklength N is N = 2M − 1; the parity-
check matrix contains, as its columns, all the N non-zero vectors of length M
bits.

The first few Hamming codes have the following rates:

Checks, M (N,K) R = K/N

2 (3, 1) 1/3 repetition code R3

3 (7, 4) 4/7 (7, 4) Hamming code
4 (15, 11) 11/15
5 (31, 26) 26/31
6 (63, 57) 57/63

Exercise 13.4.[2, p.223] What is the probability of block error of the (N,K)
Hamming code to leading order, when the code is used for a binary
symmetric channel with noise density f?

�
13.4 Perfectness is unattainable – first proof

We will show in several ways that useful perfect codes do not exist (here,
‘useful’ means ‘having large blocklength N , and rate close neither to 0 nor 1’).

Shannon proved that, given a binary symmetric channel with any noise
level f , there exist codes with large blocklength N and rate as close as you
like to C(f) = 1 − H2(f) that enable communication with arbitrarily small
error probability. For large N , the number of errors per block will typically be
about fN , so these codes of Shannon are ‘almost-certainly-fN -error-correcting’
codes.

Let’s pick the special case of a noisy channel with f ∈ (1/3, 1/2). Can
we find a large perfect code that is fN -error-correcting? Well, let’s suppose
that such a code has been found, and examine just three of its codewords.
(Remember that the code ought to have rate R ' 1−H2(f), so it should have
an enormous number (2NR) of codewords.) Without loss of generality, we
choose one of the codewords to be the all-zero codeword and define the other
two to have overlaps with it as shown in figure 13.6. The second codeword
differs from the first in a fraction u+v of its coordinates. The third codeword
differs from the first in a fraction v + w, and from the second in a fraction
u + w. A fraction x of the coordinates have value zero in all three codewords.
Now, if the code is fN -error-correcting, its minimum distance must be greater
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13.5: Weight enumerator function of random linear codes 211

than 2fN , so

u + v > 2f, v + w > 2f, and u + w > 2f. (13.6)

Summing these three inequalities and dividing by two, we have

u + v + w > 3f. (13.7)

So if f > 1/3, we can deduce u+v+w > 1, so that x < 0, which is impossible.
Such a code cannot exist. So the code cannot have three codewords, let alone
2NR.

We conclude that, whereas Shannon proved there are plenty of codes for
communicating over a binary symmetric channel with f > 1/3, there are no

perfect codes that can do this.

We now study a more general argument that indicates that there are no
large perfect linear codes for general rates (other than 0 and 1). We do this
by finding the typical distance of a random linear code.

�
13.5 Weight enumerator function of random linear codes

Imagine making a code by picking the binary entries in the M×N parity-check

N� � � ������������������
�

1 0 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 0
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Figure 13.7. A random binary
parity-check matrix.

matrix H at random. What weight enumerator function should we expect?

The weight enumerator of one particular code with parity-check matrix H,
A(w)H, is the number of codewords of weight w, which can be written

A(w)H =
∑

x:|x|=w

�
[Hx = 0] , (13.8)

where the sum is over all vectors x whose weight is w and the truth function�
[Hx = 0] equals one if Hx = 0 and zero otherwise.

We can find the expected value of A(w),

〈A(w)〉 =
∑

H

P (H)A(w)H (13.9)

=
∑

x:|x|=w

∑

H

P (H)
�
[Hx=0] , (13.10)

by evaluating the probability that a particular word of weight w > 0 is a
codeword of the code (averaging over all binary linear codes in our ensemble).
By symmetry, this probability depends only on the weight w of the word, not
on the details of the word. The probability that the entire syndrome Hx is
zero can be found by multiplying together the probabilities that each of the
M bits in the syndrome is zero. Each bit zm of the syndrome is a sum (mod
2) of w random bits, so the probability that zm =0 is 1/2. The probability that
Hx=0 is thus

∑

H

P (H)
�
[Hx=0] = (1/2)M = 2−M , (13.11)

independent of w.

The expected number of words of weight w (13.10) is given by summing,
over all words of weight w, the probability that each word is a codeword. The
number of words of weight w is

(N
w

)

, so

〈A(w)〉 =

(

N

w

)

2−M for any w > 0. (13.12)
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212 13 — Binary Codes

For large N , we can use log
(

N
w

)

' NH2(w/N) and R ' 1 − M/N to write

log2〈A(w)〉 ' NH2(w/N) − M (13.13)

' N [H2(w/N) − (1 − R)] for any w > 0. (13.14)

As a concrete example, figure 13.8 shows the expected weight enumerator
function of a rate-1/3 random linear code with N = 540 and M = 360.
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Figure 13.8. The expected weight
enumerator function 〈A(w)〉 of a
random linear code with N = 540
and M = 360. Lower figure shows
〈A(w)〉 on a logarithmic scale.

Gilbert–Varshamov distance

For weights w such that H2(w/N) < (1 − R), the expectation of A(w) is
smaller than 1; for weights such that H2(w/N) > (1 − R), the expectation is
greater than 1. We thus expect, for large N , that the minimum distance of a
random linear code will be close to the distance dGV defined by

H2(dGV/N) = (1 − R). (13.15)

Definition. This distance, dGV ≡ NH−1
2 (1 − R), is the Gilbert–Varshamov

distance for rate R and blocklength N .

The Gilbert–Varshamov conjecture, widely believed, asserts that (for large
N) it is not possible to create binary codes with minimum distance significantly
greater than dGV.

Definition. The Gilbert–Varshamov rate RGV is the maximum rate at which
you can reliably communicate with a bounded-distance decoder (as defined on
p.207), assuming that the Gilbert–Varshamov conjecture is true.

Why sphere-packing is a bad perspective, and an obsession with distance

is inappropriate

If one uses a bounded-distance decoder, the maximum tolerable noise level
will flip a fraction fbd = 1

2dmin/N of the bits. So, assuming dmin is equal to
the Gilbert distance dGV (13.15), we have:

0

0.5

1

0 0.25 0.5

Capacity
R_GV

f

Figure 13.9. Contrast between
Shannon’s channel capacity C and
the Gilbert rate RGV – the
maximum communication rate
achievable using a
bounded-distance decoder, as a
function of noise level f . For any
given rate, R, the maximum
tolerable noise level for Shannon
is twice as big as the maximum
tolerable noise level for a
‘worst-case-ist’ who uses a
bounded-distance decoder.

H2(2fbd) = (1 − RGV). (13.16)

RGV = 1 − H2(2fbd). (13.17)

Now, here’s the crunch: what did Shannon say is achievable? He said the
maximum possible rate of communication is the capacity,

C = 1 − H2(f). (13.18)

So for a given rate R, the maximum tolerable noise level, according to Shannon,
is given by

H2(f) = (1 − R). (13.19)

Our conclusion: imagine a good code of rate R has been chosen; equations
(13.16) and (13.19) respectively define the maximum noise levels tolerable by
a bounded-distance decoder, fbd, and by Shannon’s decoder, f .

fbd = f/2. (13.20)

Bounded-distance decoders can only ever cope with half the noise-level that
Shannon proved is tolerable!

How does this relate to perfect codes? A code is perfect if there are t-
spheres around its codewords that fill Hamming space without overlapping.
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But when a typical random linear code is used to communicate over a bi-
nary symmetric channel near to the Shannon limit, the typical number of bits
flipped is fN , and the minimum distance between codewords is also fN , or
a little bigger, if we are a little below the Shannon limit. So the fN -spheres
around the codewords overlap with each other sufficiently that each sphere
almost contains the centre of its nearest neighbour! The reason why this

Figure 13.10. Two overlapping
spheres whose radius is almost as
big as the distance between their
centres.

overlap is not disastrous is because, in high dimensions, the volume associated
with the overlap, shown shaded in figure 13.10, is a tiny fraction of either
sphere, so the probability of landing in it is extremely small.

The moral of the story is that worst-case-ism can be bad for you, halving
your ability to tolerate noise. You have to be able to decode way beyond the
minimum distance of a code to get to the Shannon limit!

Nevertheless, the minimum distance of a code is of interest in practice,
because, under some conditions, the minimum distance dominates the errors
made by a code.

�
13.6 Berlekamp’s bats

A blind bat lives in a cave. It flies about the centre of the cave, which corre-
sponds to one codeword, with its typical distance from the centre controlled
by a friskiness parameter f . (The displacement of the bat from the centre
corresponds to the noise vector.) The boundaries of the cave are made up of
stalactites that point in towards the centre of the cave (figure 13.11). Each
stalactite is analogous to the boundary between the home codeword and an-
other codeword. The stalactite is like the shaded region in figure 13.10, but
reshaped to convey the idea that it is a region of very small volume.

Decoding errors correspond to the bat’s intended trajectory passing inside
a stalactite. Collisions with stalactites at various distances from the centre
are possible.

If the friskiness is very small, the bat is usually very close to the centre
of the cave; collisions will be rare, and when they do occur, they will usually
involve the stalactites whose tips are closest to the centre point. Similarly,
under low-noise conditions, decoding errors will be rare, and they will typi-
cally involve low-weight codewords. Under low-noise conditions, the minimum
distance of a code is relevant to the (very small) probability of error.

. . .

t

1 2

Figure 13.11. Berlekamp’s
schematic picture of Hamming
space in the vicinity of a
codeword. The jagged solid line
encloses all points to which this
codeword is the closest. The
t-sphere around the codeword
takes up a small fraction of this
space.
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If the friskiness is higher, the bat may often make excursions beyond the
safe distance t where the longest stalactites start, but it will collide most fre-
quently with more distant stalactites, owing to their greater number. There’s
only a tiny number of stalactites at the minimum distance, so they are rela-
tively unlikely to cause the errors. Similarly, errors in a real error-correcting
code depend on the properties of the weight enumerator function.

At very high friskiness, the bat is always a long way from the centre of
the cave, and almost all its collisions involve contact with distant stalactites.
Under these conditions, the bat’s collision frequency has nothing to do with
the distance from the centre to the closest stalactite.

�
13.7 Concatenation of Hamming codes

It is instructive to play some more with the concatenation of Hamming codes,
a concept we first visited in figure 11.6, because we will get insights into the
notion of good codes and the relevance or otherwise of the minimum distance
of a code.

We can create a concatenated code for a binary symmetric channel with
noise density f by encoding with several Hamming codes in succession.

The table recaps the key properties of the Hamming codes, indexed by
number of constraints, M . All the Hamming codes have minimum distance
d = 3 and can correct one error in N .

N = 2M − 1 blocklength
K = N − M number of source bits

pB = 3
N

(N
2

)

f2 probability of block error to leading order

R

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12
C

Figure 13.12. The rate R of the
concatenated Hamming code as a
function of the number of
concatenations, C.

If we make a product code by concatenating a sequence of C Hamming
codes with increasing M , we can choose those parameters {Mc}

C
c=1 in such a

way that the rate of the product code

RC =

C
∏

c=1

Nc − Mc

Nc
(13.21)

tends to a non-zero limit as C increases. For example, if we set M1 = 2,
M2 = 3, M3 = 4, etc., then the asymptotic rate is 0.093 (figure 13.12).

The blocklength N is a rapidly-growing function of C, so these codes are
somewhat impractical. A further weakness of these codes is that their min-
imum distance is not very good (figure 13.13). Every one of the constituent
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C

Figure 13.13. The blocklength NC

(upper curve) and minimum
distance dC (lower curve) of the
concatenated Hamming code as a
function of the number of
concatenations C.

Hamming codes has minimum distance 3, so the minimum distance of the
Cth product is 3C . The blocklength N grows faster than 3C , so the ratio d/N
tends to zero as C increases. In contrast, for typical random codes, the ratio
d/N tends to a constant such that H2(d/N) = 1−R. Concatenated Hamming
codes thus have ‘bad’ distance.

Nevertheless, it turns out that this simple sequence of codes yields good
codes for some channels – but not very good codes (see section 11.4 to recall
the definitions of the terms ‘good’ and ‘very good’). Rather than prove this
result, we will simply explore it numerically.

Figure 13.14 shows the bit error probability pb of the concatenated codes
assuming that the constituent codes are decoded in sequence, as described
in section 11.4. [This one-code-at-a-time decoding is suboptimal, as we saw
there.] The horizontal axis shows the rates of the codes. As the number
of concatenations increases, the rate drops to 0.093 and the error probability
drops towards zero. The channel assumed in the figure is the binary symmetric
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channel with f = 0.0588. This is the highest noise level that can be tolerated
using this concatenated code.

pb

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 0.2 0.4 0.6 0.8 1

N=321
315

61525

10^13

R

Figure 13.14. The bit error
probabilities versus the rates R of
the concatenated Hamming codes,
for the binary symmetric channel
with f = 0.0588. Labels alongside
the points show the blocklengths,
N . The solid line shows the
Shannon limit for this channel.
The bit error probability drops to
zero while the rate tends to 0.093,
so the concatenated Hamming
codes are a ‘good’ code family.

The take-home message from this story is distance isn’t everything. The
minimum distance of a code, although widely worshipped by coding theorists,
is not of fundamental importance to Shannon’s mission of achieving reliable
communication over noisy channels.

. Exercise 13.5.[3 ] Prove that there exist families of codes with ‘bad’ distance
that are ‘very good’ codes.

�
13.8 Distance isn’t everything

Let’s get a quantitative feeling for the effect of the minimum distance of a
code, for the special case of a binary symmetric channel.

The error probability associated with one low-weight codeword

Let a binary code have blocklength N and just two codewords, which differ in
d places. For simplicity, let’s assume d is even. What is the error probability
if this code is used on a binary symmetric channel with noise level f?

Bit flips matter only in places where the two codewords differ. The error
probability is dominated by the probability that d/2 of these bits are flipped.
What happens to the other bits is irrelevant, since the optimal decoder ignores
them.

P (block error) '

(

d

d/2

)

fd/2(1 − f)d/2. (13.22)

This error probability associated with a single codeword of weight d is plotted
in figure 13.15. Using the approximation for the binomial coefficient (1.16),
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Figure 13.15. The error
probability associated with a
single codeword of weight d,
(

d
d/2

)

fd/2(1 − f)d/2, as a function

of f .

we can further approximate

P (block error) '
[

2f1/2(1 − f)1/2
]d

(13.23)

≡ [β(f)]d, (13.24)

where β(f) = 2f 1/2(1 − f)1/2 is called the Bhattacharyya parameter of the
channel.

Now, consider a general linear code with distance d. Its block error prob-
ability must be at least

( d
d/2

)

fd/2(1 − f)d/2, independent of the blocklength
N of the code. For this reason, a sequence of codes of increasing blocklength
N and constant distance d (i.e., ‘very bad’ distance) cannot have a block er-
ror probability that tends to zero, on any binary symmetric channel. If we
are interested in making superb error-correcting codes with tiny, tiny error
probability, we might therefore shun codes with bad distance. However, being
pragmatic, we should look more carefully at figure 13.15. In Chapter 1 we
argued that codes for disk drives need an error probability smaller than about
10−18. If the raw error probability in the disk drive is about 0.001, the error
probability associated with one codeword at distance d = 20 is smaller than
10−24. If the raw error probability in the disk drive is about 0.01, the error
probability associated with one codeword at distance d = 30 is smaller than
10−20. For practical purposes, therefore, it is not essential for a code to have
good distance. For example, codes of blocklength 10 000, known to have many
codewords of weight 32, can nevertheless correct errors of weight 320 with tiny
error probability.
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I wouldn’t want you to think I am recommending the use of codes with
bad distance; in Chapter 47 we will discuss low-density parity-check codes, my
favourite codes, which have both excellent performance and good distance.

�
13.9 The union bound

The error probability of a code on the binary symmetric channel can be
bounded in terms of its weight enumerator function by adding up appropriate
multiples of the error probability associated with a single codeword (13.24):

P (block error) ≤
∑

w>0

A(w)[β(f)]w . (13.25)

This inequality, which is an example of a union bound, is accurate for low
noise levels f , but inaccurate for high noise levels, because it overcounts the
contribution of errors that cause confusion with more than one codeword at a
time.

. Exercise 13.6.[3 ] Poor man’s noisy-channel coding theorem.

Pretending that the union bound (13.25) is accurate, and using the aver-
age weight enumerator function of a random linear code (13.14) (section
13.5) as A(w), estimate the maximum rate RUB(f) at which one can
communicate over a binary symmetric channel.

Or, to look at it more positively, using the union bound (13.25) as an
inequality, show that communication at rates up to RUB(f) is possible
over the binary symmetric channel.

In the following chapter, by analysing the probability of error of syndrome

decoding for a binary linear code, and using a union bound, we will prove
Shannon’s noisy-channel coding theorem (for symmetric binary channels), and
thus show that very good linear codes exist.

�
13.10 Dual codes

A concept that has some importance in coding theory, though we will have
no immediate use for it in this book, is the idea of the dual of a linear error-
correcting code.

An (N,K) linear error-correcting code can be thought of as a set of 2K

codewords generated by adding together all combinations of K independent
basis codewords. The generator matrix of the code consists of those K basis
codewords, conventionally written as row vectors. For example, the (7, 4)
Hamming code’s generator matrix (from p.10) is

G =









1 0 0 0 1 0 1

0 1 0 0 1 1 0

0 0 1 0 1 1 1

0 0 0 1 0 1 1









(13.26)

and its sixteen codewords were displayed in table 1.14 (p.9). The code-
words of this code are linear combinations of the four vectors [1 0 0 0 1 0 1],
[0 1 0 0 1 1 0], [0 0 1 0 1 1 1], and [0 0 0 1 0 1 1].

An (N,K) code may also be described in terms of an M ×N parity-check
matrix (where M = N − K) as the set of vectors {t} that satisfy

Ht = 0. (13.27)
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One way of thinking of this equation is that each row of H specifies a vector
to which t must be orthogonal if it is a codeword.

The generator matrix specifies K vectors from which all codewords
can be built, and the parity-check matrix specifies a set of M vectors
to which all codewords are orthogonal.

The dual of a code is obtained by exchanging the generator matrix
and the parity-check matrix.

Definition. The set of all vectors of length N that are orthogonal to all code-
words in a code, C, is called the dual of the code, C⊥.

If t is orthogonal to h1 and h2, then it is also orthogonal to h3 ≡ h1 +h2;
so all codewords are orthogonal to any linear combination of the M rows of
H. So the set of all linear combinations of the rows of the parity-check matrix
is the dual code.

For our Hamming (7, 4) code, the parity-check matrix is (from p.12):

H =
[

P I3

]

=





1 1 1 0 1 0 0

0 1 1 1 0 1 0

1 0 1 1 0 0 1



 . (13.28)

The dual of the (7, 4) Hamming code H(7,4) is the code shown in table 13.16.

0000000

0010111

0101101

0111010

1001110

1011001

1100011

1110100

Table 13.16. The eight codewords
of the dual of the (7, 4) Hamming
code. [Compare with table 1.14,
p.9.]

A possibly unexpected property of this pair of codes is that the dual,
H⊥

(7,4), is contained within the code H(7,4) itself: every word in the dual code

is a codeword of the original (7, 4) Hamming code. This relationship can be
written using set notation:

H⊥
(7,4) ⊂ H(7,4). (13.29)

The possibility that the set of dual vectors can overlap the set of codeword
vectors is counterintuitive if we think of the vectors as real vectors – how can
a vector be orthogonal to itself? But when we work in modulo-two arithmetic,
many non-zero vectors are indeed orthogonal to themselves!

. Exercise 13.7.[1, p.223] Give a simple rule that distinguishes whether a binary
vector is orthogonal to itself, as is each of the three vectors [1 1 1 0 1 0 0],
[0 1 1 1 0 1 0], and [1 0 1 1 0 0 1].

Some more duals

In general, if a code has a systematic generator matrix,

G = [IK |PT] , (13.30)

where P is a K × M matrix, then its parity-check matrix is

H = [P|IM ] . (13.31)
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Example 13.8. The repetition code R3 has generator matrix

G =
[

1 1 1

]

; (13.32)

its parity-check matrix is

H =

[

1 1 0

1 0 1

]

. (13.33)

The two codewords are [1 1 1] and [0 0 0].

The dual code has generator matrix

G⊥ = H =

[

1 1 0

1 0 1

]

(13.34)

or equivalently, modifying G⊥ into systematic form by row additions,

G⊥ =

[

1 0 1

0 1 1

]

. (13.35)

We call this dual code the simple parity code P3; it is the code with one
parity-check bit, which is equal to the sum of the two source bits. The
dual code’s four codewords are [1 1 0], [1 0 1], [0 0 0], and [0 1 1].

In this case, the only vector common to the code and the dual is the
all-zero codeword.

Goodness of duals

If a sequence of codes is ‘good’, are their duals good too? Examples can be
constructed of all cases: good codes with good duals (random linear codes);
bad codes with bad duals; and good codes with bad duals. The last category
is especially important: many state-of-the-art codes have the property that
their duals are bad. The classic example is the low-density parity-check code,
whose dual is a low-density generator-matrix code.

. Exercise 13.9.[3 ] Show that low-density generator-matrix codes are bad. A
family of low-density generator-matrix codes is defined by two param-
eters j, k, which are the column weight and row weight of all rows and
columns respectively of G. These weights are fixed, independent of N ;
for example, (j, k) = (3, 6). [Hint: show that the code has low-weight
codewords, then use the argument from p.215.]

Exercise 13.10.[5 ] Show that low-density parity-check codes are good, and have
good distance. (For solutions, see Gallager (1963) and MacKay (1999b).)

Self-dual codes

The (7, 4) Hamming code had the property that the dual was contained in the
code itself. A code is self-orthogonal if it is contained in its dual. For example,
the dual of the (7, 4) Hamming code is a self-orthogonal code. One way of
seeing this is that the overlap between any pair of rows of H is even. Codes that
contain their duals are important in quantum error-correction (Calderbank
and Shor, 1996).

It is intriguing, though not necessarily useful, to look at codes that are
self-dual. A code C is self-dual if the dual of the code is identical to the code.

C⊥ = C. (13.36)

Some properties of self-dual codes can be deduced:
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1. If a code is self-dual, then its generator matrix is also a parity-check
matrix for the code.

2. Self-dual codes have rate 1/2, i.e., M = K = N/2.

3. All codewords have even weight.

. Exercise 13.11.[2, p.223] What property must the matrix P satisfy, if the code
with generator matrix G = [IK |PT] is self-dual?

Examples of self-dual codes

1. The repetition code R2 is a simple example of a self-dual code.

G = H =
[

1 1

]

. (13.37)

2. The smallest non-trivial self-dual code is the following (8, 4) code.

G =
[

I4 PT
]

=









1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0









. (13.38)

. Exercise 13.12.[2, p.223] Find the relationship of the above (8, 4) code to the
(7, 4) Hamming code.

Duals and graphs

Let a code be represented by a graph in which there are nodes of two types,
parity-check constraints and equality constraints, joined by edges which rep-
resent the bits of the code (not all of which need be transmitted).

The dual code’s graph is obtained by replacing all parity-check nodes by
equality nodes and vice versa. This type of graph is called a normal graph by
Forney (2001).

Further reading

Duals are important in coding theory because functions involving a code (such
as the posterior distribution over codewords) can be transformed by a Fourier
transform into functions over the dual code. For an accessible introduction
to Fourier analysis on finite groups, see Terras (1999). See also MacWilliams
and Sloane (1977).

�
13.11 Generalizing perfectness to other channels

Having given up on the search for perfect codes for the binary symmetric
channel, we could console ourselves by changing channel. We could call a
code ‘a perfect u-error-correcting code for the binary erasure channel’ if it
can restore any u erased bits, and never more than u. Rather than using the In a perfect u-error-correcting

code for the binary erasure
channel, the number of redundant
bits must be N − K = u.

word perfect, however, the conventional term for such a code is a ‘maximum
distance separable code’, or MDS code.

As we already noted in exercise 11.10 (p.190), the (7, 4) Hamming code is
not an MDS code. It can recover some sets of 3 erased bits, but not all. If
any 3 bits corresponding to a codeword of weight 3 are erased, then one bit of
information is unrecoverable. This is why the (7, 4) code is a poor choice for
a RAID system.
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A tiny example of a maximum distance separable code is the simple parity-
check code P3 whose parity-check matrix is H = [1 1 1]. This code has 4
codewords, all of which have even parity. All codewords are separated by
a distance of 2. Any single erased bit can be restored by setting it to the
parity of the other two bits. The repetition codes are also maximum distance
separable codes.

. Exercise 13.13.[5, p.224] Can you make an (N,K) code, with M = N − K
parity symbols, for a q-ary erasure channel, such that the decoder can
recover the codeword when any M symbols are erased in a block of N?
[Example: for the channel with q = 4 symbols there is an (N,K) = (5, 2)
code which can correct any M = 3 erasures.]

For the q-ary erasure channel with q > 2, there are large numbers of MDS
codes, of which the Reed–Solomon codes are the most famous and most widely
used. As long as the field size q is bigger than the blocklength N , MDS block
codes of any rate can be found. (For further reading, see Lin and Costello
(1983).)

�
13.12 Summary

Shannon’s codes for the binary symmetric channel can almost always correct
fN errors, but they are not fN -error-correcting codes.

Reasons why the distance of a code has little relevance

1. The Shannon limit shows that the best codes must be able to cope with
a noise level twice as big as the maximum noise level for a bounded-
distance decoder.

2. When the binary symmetric channel has f > 1/4, no code with a
bounded-distance decoder can communicate at all; but Shannon says
good codes exist for such channels.

3. Concatenation shows that we can get good performance even if the dis-
tance is bad.

The whole weight enumerator function is relevant to the question of
whether a code is a good code.

The relationship between good codes and distance properties is discussed
further in exercise 13.14 (p.220).

�
13.13 Further exercises

Exercise 13.14.[3, p.224] A codeword t is selected from a linear (N,K) code
C, and it is transmitted over a noisy channel; the received signal is y.
We assume that the channel is a memoryless channel such as a Gaus-
sian channel. Given an assumed channel model P (y | t), there are two
decoding problems.

The codeword decoding problem is the task of inferring which
codeword t was transmitted given the received signal.

The bitwise decoding problem is the task of inferring for each
transmitted bit tn how likely it is that that bit was a one rather
than a zero.
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Consider optimal decoders for these two decoding problems. Prove that
the probability of error of the optimal bitwise-decoder is closely related
to the probability of error of the optimal codeword-decoder, by proving
the following theorem.

Theorem 13.1 If a binary linear code has minimum distance dmin,

then, for any given channel, the codeword bit error probability of the

optimal bitwise decoder, pb, and the block error probability of the maxi-

mum likelihood decoder, pB, are related by:

pB ≥ pb ≥
1

2

dmin

N
pB. (13.39)

Exercise 13.15.[1 ] What are the minimum distances of the (15, 11) Hamming
code and the (31, 26) Hamming code?

. Exercise 13.16.[2 ] Let A(w) be the average weight enumerator function of a
rate-1/3 random linear code with N = 540 and M = 360. Estimate,
from first principles, the value of A(w) at w = 1.

Exercise 13.17.[3C ] A code with minimum distance greater than dGV. A rather
nice (15, 5) code is generated by this generator matrix, which is based
on measuring the parities of all the

(5
3

)

= 10 triplets of source bits:

G =













1 · · · · · 1 1 1 · · 1 1 · 1
· 1 · · · · · 1 1 1 1 · 1 1 ·
· · 1 · · 1 · · 1 1 · 1 · 1 1
· · · 1 · 1 1 · · 1 1 · 1 · 1
· · · · 1 1 1 1 · · 1 1 · 1 ·













. (13.40)

Find the minimum distance and weight enumerator function of this code.

Exercise 13.18.[3C ] Find the minimum distance of the ‘pentagonful’ low-

Figure 13.17. The graph of the
pentagonful low-density
parity-check code with 15 bit
nodes (circles) and 10 parity-check
nodes (triangles). [This graph is
known as the Petersen graph.]

density parity-check code whose parity-check matrix is

H =

































1 · · · 1 1 · · · · · · · · ·
1 1 · · · · 1 · · · · · · · ·
· 1 1 · · · · 1 · · · · · · ·
· · 1 1 · · · · 1 · · · · · ·
· · · 1 1 · · · · 1 · · · · ·

· · · · · 1 · · · · 1 · · · 1
· · · · · · · · 1 · 1 1 · · ·
· · · · · · 1 · · · · 1 1 · ·
· · · · · · · · · 1 · · 1 1 ·
· · · · · · · 1 · · · · · 1 1

































. (13.41)

Show that nine of the ten rows are independent, so the code has param-
eters N = 15, K = 6. Using a computer, find its weight enumerator
function.

. Exercise 13.19.[3C ] Replicate the calculations used to produce figure 13.12.
Check the assertion that the highest noise level that’s correctable is
0.0588. Explore alternative concatenated sequences of codes. Can you
find a better sequence of concatenated codes – better in the sense that it
has either higher asymptotic rate R or can tolerate a higher noise level
f?
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Exercise 13.20.[3, p.226] Investigate the possibility of achieving the Shannon
limit with linear block codes, using the following counting argument.
Assume a linear code of large blocklength N and rate R = K/N . The
code’s parity-check matrix H has M = N − K rows. Assume that the
code’s optimal decoder, which solves the syndrome decoding problem
Hn = z, allows reliable communication over a binary symmetric channel
with flip probability f .

How many ‘typical’ noise vectors n are there?

Roughly how many distinct syndromes z are there?

Since n is reliably deduced from z by the optimal decoder, the number
of syndromes must be greater than or equal to the number of typical
noise vectors. What does this tell you about the largest possible value
of rate R for a given f?

. Exercise 13.21.[2 ] Linear binary codes use the input symbols 0 and 1 with
equal probability, implicitly treating the channel as a symmetric chan-
nel. Investigate how much loss in communication rate is caused by this
assumption, if in fact the channel is a highly asymmetric channel. Take
as an example a Z-channel. How much smaller is the maximum possible
rate of communication using symmetric inputs than the capacity of the
channel? [Answer: about 6%.]

Exercise 13.22.[2 ] Show that codes with ‘very bad’ distance are ‘bad’ codes, as
defined in section 11.4 (p.183).

Exercise 13.23.[3 ] One linear code can be obtained from another by punctur-

ing. Puncturing means taking each codeword and deleting a defined set
of bits. Puncturing turns an (N,K) code into an (N ′,K) code, where
N ′ < N .

Another way to make new linear codes from old is shortening. Shortening
means constraining a defined set of bits to be zero, and then deleting
them from the codewords. Typically if we shorten by one bit, half of the
code’s codewords are lost. Shortening typically turns an (N,K) code
into an (N ′,K ′) code, where N − N ′ = K − K ′.

Another way to make a new linear code from two old ones is to make
the intersection of the two codes: a codeword is only retained in the new
code if it is present in both of the two old codes.

Discuss the effect on a code’s distance-properties of puncturing, short-
ening, and intersection. Is it possible to turn a code family with bad
distance into a code family with good distance, or vice versa, by each of
these three manipulations?

Exercise 13.24.[3, p.226] Todd Ebert’s ‘hat puzzle’.

Three players enter a room and a red or blue hat is placed on each
person’s head. The colour of each hat is determined by a coin toss, with
the outcome of one coin toss having no effect on the others. Each person
can see the other players’ hats but not his own.

No communication of any sort is allowed, except for an initial strategy
session before the group enters the room. Once they have had a chance
to look at the other hats, the players must simultaneously guess their
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own hat’s colour or pass. The group shares a $3 million prize if at least

one player guesses correctly and no players guess incorrectly. If you already know the hat
puzzle, you could try the ‘Scottish
version’ of the rules in which the
prize is only awarded to the group
if they all guess correctly.

In the ‘Reformed Scottish
version’, all the players must
guess correctly, and there are two

rounds of guessing. Those players
who guess during round one leave
the room. The remaining players
must guess in round two. What
strategy should the team adopt to
maximize their chance of winning?

The same game can be played with any number of players. The general
problem is to find a strategy for the group that maximizes its chances of
winning the prize. Find the best strategies for groups of size three and
seven.

[Hint: when you’ve done three and seven, you might be able to solve
fifteen.]

Exercise 13.25.[5 ] Estimate how many binary low-density parity-check codes
have self-orthogonal duals. [Note that we don’t expect a huge number,
since almost all low-density parity-check codes are ‘good’, but a low-
density parity-check code that contains its dual must be ‘bad’.]

Exercise 13.26.[2C ] In figure 13.15 we plotted the error probability associated
with a single codeword of weight d as a function of the noise level f of a
binary symmetric channel. Make an equivalent plot for the case of the
Gaussian channel, showing the error probability associated with a single
codeword of weight d as a function of the rate-compensated signal-to-
noise ratio Eb/N0. Because Eb/N0 depends on the rate, you have to
choose a code rate. Choose R = 1/2, 2/3, 3/4, or 5/6.

�
13.14 Solutions

Solution to exercise 13.4 (p.210). The probability of block error to leading
order is pB = 3

N

(N
2

)

f2.

Solution to exercise 13.7 (p.217). A binary vector is perpendicular to itself if
it has even weight, i.e., an even number of 1s.

Solution to exercise 13.11 (p.219). The self-dual code has two equivalent
parity-check matrices, H1 = G = [IK |PT] and H2 = [P|IK ]; these must be
equivalent to each other through row additions, that is, there is a matrix U

such that UH2 = H1, so

[UP|UIK ] = [IK |PT] . (13.42)

From the right-hand sides of this equation, we have U = PT, so the left-hand
sides become:

PTP = IK . (13.43)

Thus if a code with generator matrix G = [IK |PT] is self-dual then P is an
orthogonal matrix, modulo 2, and vice versa.

Solution to exercise 13.12 (p.219). The (8, 4) and (7, 4) codes are intimately
related. The (8, 4) code, whose parity-check matrix is

H =
[

P I4

]

=









0 1 1 1 1 0 0 0

1 0 1 1 0 1 0 0

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 1









, (13.44)

is obtained by (a) appending an extra parity-check bit which can be thought
of as the parity of all seven bits of the (7, 4) Hamming code; and (b) reordering
the first four bits.
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Solution to exercise 13.13 (p.220). If an (N,K) code, with M = N −K parity
symbols, has the property that the decoder can recover the codeword when any

M symbols are erased in a block of N , then the code is said to be maximum
distance separable (MDS).

No MDS binary codes exist, apart from the repetition codes and simple
parity codes. For q > 2, some MDS codes can be found.

As a simple example, here is a (9, 2) code for the 8-ary erasure channel.
The code is defined in terms of the multiplication and addition rules of GF (8),
which are given in Appendix C.1. The elements of the input alphabet are
{0, 1, A,B,C,D,E, F} and the generator matrix of the code is

G =

[

1 0 1 A B C D E F
0 1 1 1 1 1 1 1 1

]

. (13.45)

The resulting 64 codewords are:

000000000 011111111 0AAAAAAAA 0BBBBBBBB 0CCCCCCCC 0DDDDDDDD 0EEEEEEEE 0FFFFFFFF

101ABCDEF 110BADCFE 1AB01EFCD 1BA10FEDC 1CDEF01AB 1DCFE10BA 1EFCDAB01 1FEDCBA10

A0ACEB1FD A1BDFA0EC AA0EC1BDF AB1FD0ACE ACE0AFDB1 ADF1BECA0 AECA0DF1B AFDB1CE0A

B0BEDFC1A B1AFCED0B BA1CFDEB0 BB0DECFA1 BCFA1B0DE BDEB0A1CF BED0B1AFC BFC1A0BED

C0CBFEAD1 C1DAEFBC0 CAE1DC0FB CBF0CD1EA CC0FBAE1D CD1EABF0C CEAD10CBF CFBC01DAE

D0D1CAFBE D1C0DBEAF DAFBE0D1C DBEAF1C0D DC1D0EBFA DD0C1FAEB DEBFAC1D0 DFAEBD0C1

E0EF1DBAC E1FE0CABD EACDBF10E EBDCAE01F ECABD1FE0 EDBAC0EF1 EE01FBDCA EF10EACDB

F0FDA1ECB F1ECB0FDA FADF0BCE1 FBCE1ADF0 FCB1EDA0F FDA0FCB1E FE1BCF0AD FF0ADE1BC

Solution to exercise 13.14 (p.220). Quick, rough proof of the theorem. Let x

denote the difference between the reconstructed codeword and the transmitted
codeword. For any given channel output r, there is a posterior distribution
over x. This posterior distribution is positive only on vectors x belonging
to the code; the sums that follow are over codewords x. The block error
probability is:

pB =
∑

x6=0

P (x | r). (13.46)

The average bit error probability, averaging over all bits in the codeword, is:

pb =
∑

x6=0

P (x | r)
w(x)

N
, (13.47)

where w(x) is the weight of codeword x. Now the weights of the non-zero
codewords satisfy

1 ≥
w(x)

N
≥

dmin

N
. (13.48)

Substituting the inequalities (13.48) into the definitions (13.46, 13.47), we ob-
tain:

pB ≥ pb ≥
dmin

N
pB, (13.49)

which is a factor of two stronger, on the right, than the stated result (13.39).
In making the proof watertight, I have weakened the result a little.

Careful proof. The theorem relates the performance of the optimal block de-
coding algorithm and the optimal bitwise decoding algorithm.

We introduce another pair of decoding algorithms, called the block-
guessing decoder and the bit-guessing decoder. The idea is that these two
algorithms are similar to the optimal block decoder and the optimal bitwise
decoder, but lend themselves more easily to analysis.

We now define these decoders. Let x denote the inferred codeword. For
any given code:
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The optimal block decoder returns the codeword x that maximizes the
posterior probability P (x | r), which is proportional to the likelihood
P (r |x).

The probability of error of this decoder is called pB.

The optimal bit decoder returns for each of the N bits, xn, the
value of a that maximizes the posterior probability P (xn =a | r) =
∑

x
P (x | r)

�
[xn =a].

The probability of error of this decoder is called pb.

The block-guessing decoder returns a random codeword x with probabil-
ity distribution given by the posterior probability P (x | r).

The probability of error of this decoder is called pG
B .

The bit-guessing decoder returns for each of the N bits, xn, a random bit
from the probability distribution P (xn =a | r).

The probability of error of this decoder is called pG
b .

The theorem states that the optimal bit error probability pb is bounded above
by pB and below by a given multiple of pB (13.39).

The left-hand inequality in (13.39) is trivially true – if a block is correct, all
its constituent bits are correct; so if the optimal block decoder outperformed
the optimal bit decoder, we could make a better bit decoder from the block
decoder.

We prove the right-hand inequality by establishing that:

(a) the bit-guessing decoder is nearly as good as the optimal bit decoder:

pG
b ≤ 2pb. (13.50)

(b) the bit-guessing decoder’s error probability is related to the block-
guessing decoder’s by

pG
b ≥

dmin

N
pG
B . (13.51)

Then since pG
B ≥ pB, we have

pb >
1

2
pG
b ≥

1

2

dmin

N
pG
B ≥

1

2

dmin

N
pB. (13.52)

We now prove the two lemmas.

Near-optimality of guessing: Consider first the case of a single bit, with posterior
probability {p0, p1}. The optimal bit decoder has probability of error

P optimal = min(p0, p1). (13.53)

The guessing decoder picks from 0 and 1. The truth is also distributed with
the same probability. The probability that the guesser and the truth match is
p2
0 + p2

1; the probability that they mismatch is the guessing error probability,

P guess = 2p0p1 ≤ 2min(p0, p1) = 2P optimal. (13.54)

Since pG
b is the average of many such error probabilities, P guess, and pb is the

average of the corresponding optimal error probabilities, P optimal, we obtain
the desired relationship (13.50) between pG

b and pb. 2



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

226 13 — Binary Codes

Relationship between bit error probability and block error probability: The bit-
guessing and block-guessing decoders can be combined in a single system: we
can draw a sample xn from the marginal distribution P (xn | r) by drawing
a sample (xn,x) from the joint distribution P (xn,x | r), then discarding the
value of x.

We can distinguish between two cases: the discarded value of x is the
correct codeword, or not. The probability of bit error for the bit-guessing
decoder can then be written as a sum of two terms:

pG
b = P (x correct)P (bit error |x correct)

+P (x incorrect)P (bit error |x incorrect)

= 0 + pG
BP (bit error |x incorrect).

Now, whenever the guessed x is incorrect, the true x must differ from it in at
least d bits, so the probability of bit error in these cases is at least d/N . So

pG
b ≥

d

N
pG
B .

QED. 2

Solution to exercise 13.20 (p.222). The number of ‘typical’ noise vectors n

is roughly 2NH2(f). The number of distinct syndromes z is 2M . So reliable
communication implies

M ≥ NH2(f), (13.55)

or, in terms of the rate R = 1 − M/N ,

R ≤ 1 − H2(f), (13.56)

a bound which agrees precisely with the capacity of the channel.

This argument is turned into a proof in the following chapter.

Solution to exercise 13.24 (p.222). In the three-player case, it is possible for
the group to win three-quarters of the time.

Three-quarters of the time, two of the players will have hats of the same
colour and the third player’s hat will be the opposite colour. The group can
win every time this happens by using the following strategy. Each player looks
at the other two players’ hats. If the two hats are different colours, he passes.
If they are the same colour, the player guesses his own hat is the opposite

colour.

This way, every time the hat colours are distributed two and one, one
player will guess correctly and the others will pass, and the group will win the
game. When all the hats are the same colour, however, all three players will
guess incorrectly and the group will lose.

When any particular player guesses a colour, it is true that there is only a
50:50 chance that their guess is right. The reason that the group wins 75% of
the time is that their strategy ensures that when players are guessing wrong,
a great many are guessing wrong.

For larger numbers of players, the aim is to ensure that most of the time
no one is wrong and occasionally everyone is wrong at once. In the game with
7 players, there is a strategy for which the group wins 7 out of every 8 times
they play. In the game with 15 players, the group can win 15 out of 16 times.
If you have not figured out these winning strategies for teams of 7 and 15,
I recommend thinking about the solution to the three-player game in terms
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of the locations of the winning and losing states on the three-dimensional
hypercube, then thinking laterally.

If the number of players, N , is 2r − 1, the optimal strategy can be defined
using a Hamming code of length N , and the probability of winning the prize
is N/(N + 1). Each player is identified with a number n ∈ 1 . . . N . The two
colours are mapped onto 0 and 1. Any state of their hats can be viewed as a
received vector out of a binary channel. A random binary vector of length N
is either a codeword of the Hamming code, with probability 1/(N + 1), or it
differs in exactly one bit from a codeword. Each player looks at all the other
bits and considers whether his bit can be set to a colour such that the state is
a codeword (which can be deduced using the decoder of the Hamming code).
If it can, then the player guesses that his hat is the other colour. If the state is
actually a codeword, all players will guess and will guess wrong. If the state is
a non-codeword, only one player will guess, and his guess will be correct. It’s
quite easy to train seven players to follow the optimal strategy if the cyclic
representation of the (7, 4) Hamming code is used (p.19).


