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2

Probability, Entropy, and Inference

This chapter, and its sibling, Chapter 8, devote some time to notation. Just
as the White Knight distinguished between the song, the name of the song,
and what the name of the song was called (Carroll, 1998), we will sometimes
need to be careful to distinguish between a random variable, the value of the
random variable, and the proposition that asserts that the random variable
has a particular value. In any particular chapter, however, I will use the most
simple and friendly notation possible, at the risk of upsetting pure-minded
readers. For example, if something is ‘true with probability 1’, I will usually
simply say that it is ‘true’.

�
2.1 Probabilities and ensembles

An ensemble X is a triple (x,AX ,PX), where the outcome x is the value
of a random variable, which takes on one of a set of possible values,
AX = {a1, a2, . . . , ai, . . . , aI}, having probabilities PX = {p1, p2, . . . , pI},
with P (x=ai) = pi, pi ≥ 0 and

∑

ai∈AX
P (x=ai) = 1.

The name A is mnemonic for ‘alphabet’. One example of an ensemble is a
letter that is randomly selected from an English document. This ensemble is
shown in figure 2.1. There are twenty-seven possible letters: a–z, and a space
character ‘-’.

i ai pi

1 a 0.0575
2 b 0.0128
3 c 0.0263
4 d 0.0285
5 e 0.0913
6 f 0.0173
7 g 0.0133
8 h 0.0313
9 i 0.0599
10 j 0.0006
11 k 0.0084
12 l 0.0335
13 m 0.0235
14 n 0.0596
15 o 0.0689
16 p 0.0192
17 q 0.0008
18 r 0.0508
19 s 0.0567
20 t 0.0706
21 u 0.0334
22 v 0.0069
23 w 0.0119
24 x 0.0073
25 y 0.0164
26 z 0.0007
27 – 0.1928
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Figure 2.1. Probability
distribution over the 27 outcomes
for a randomly selected letter in
an English language document
(estimated from The Frequently

Asked Questions Manual for

Linux ). The picture shows the
probabilities by the areas of white
squares.

Abbreviations. Briefer notation will sometimes be used. For example,
P (x=ai) may be written as P (ai) or P (x).

Probability of a subset. If T is a subset of AX then:

P (T ) = P (x∈T ) =
∑

ai∈T

P (x=ai). (2.1)

For example, if we define V to be vowels from figure 2.1, V =
{a, e, i, o, u}, then

P (V ) = 0.06 + 0.09 + 0.06 + 0.07 + 0.03 = 0.31. (2.2)

A joint ensemble XY is an ensemble in which each outcome is an ordered
pair x, y with x ∈ AX = {a1, . . . , aI} and y ∈ AY = {b1, . . . , bJ}.

We call P (x, y) the joint probability of x and y.

Commas are optional when writing ordered pairs, so xy ⇔ x, y.

N.B. In a joint ensemble XY the two variables are not necessarily inde-
pendent.

22
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x Figure 2.2. The probability
distribution over the 27×27
possible bigrams xy in an English
language document, The

Frequently Asked Questions

Manual for Linux.

Marginal probability. We can obtain the marginal probability P (x) from
the joint probability P (x, y) by summation:

P (x=ai) ≡
∑

y∈AY

P (x=ai, y). (2.3)

Similarly, using briefer notation, the marginal probability of y is:

P (y) ≡
∑

x∈AX

P (x, y). (2.4)

Conditional probability

P (x=ai | y = bj) ≡
P (x=ai, y = bj)

P (y = bj)
if P (y = bj) 6= 0. (2.5)

[If P (y = bj) = 0 then P (x=ai | y = bj) is undefined.]

We pronounce P (x=ai | y = bj) ‘the probability that x equals ai, given
y equals bj ’.

Example 2.1. An example of a joint ensemble is the ordered pair XY consisting
of two successive letters in an English document. The possible outcomes
are ordered pairs such as aa, ab, ac, and zz; of these, we might expect
ab and ac to be more probable than aa and zz. An estimate of the
joint probability distribution for two neighbouring characters is shown
graphically in figure 2.2.

This joint ensemble has the special property that its two marginal dis-
tributions, P (x) and P (y), are identical. They are both equal to the
monogram distribution shown in figure 2.1.

From this joint ensemble P (x, y) we can obtain conditional distributions,
P (y |x) and P (x | y), by normalizing the rows and columns, respectively
(figure 2.3). The probability P (y |x=q) is the probability distribution
of the second letter given that the first letter is a q. As you can see in
figure 2.3a, the two most probable values for the second letter y given
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(a) P (y |x) (b) P (x | y)

Figure 2.3. Conditional
probability distributions. (a)
P (y |x): Each row shows the
conditional distribution of the
second letter, y, given the first
letter, x, in a bigram xy. (b)
P (x | y): Each column shows the
conditional distribution of the
first letter, x, given the second
letter, y.

that the first letter x is q are u and -. (The space is common after q

because the source document makes heavy use of the word FAQ.)

The probability P (x | y =u) is the probability distribution of the first
letter x given that the second letter y is a u. As you can see in figure 2.3b
the two most probable values for x given y =u are n and o.

Rather than writing down the joint probability directly, we often define an
ensemble in terms of a collection of conditional probabilities. The following
rules of probability theory will be useful. (H denotes assumptions on which
the probabilities are based.)

Product rule – obtained from the definition of conditional probability:

P (x, y |H) = P (x | y,H)P (y |H) = P (y |x,H)P (x |H). (2.6)

This rule is also known as the chain rule.

Sum rule – a rewriting of the marginal probability definition:

P (x |H) =
∑

y

P (x, y |H) (2.7)

=
∑

y

P (x | y,H)P (y |H). (2.8)

Bayes’ theorem – obtained from the product rule:

P (y |x,H) =
P (x | y,H)P (y |H)

P (x |H)
(2.9)

=
P (x | y,H)P (y |H)

∑

y′ P (x | y′,H)P (y′ |H)
. (2.10)

Independence. Two random variables X and Y are independent (sometimes
written X⊥Y ) if and only if

P (x, y) = P (x)P (y). (2.11)

Exercise 2.2.[1, p.40] Are the random variables X and Y in the joint ensemble
of figure 2.2 independent?
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2.2: The meaning of probability 25

I said that we often define an ensemble in terms of a collection of condi-
tional probabilities. The following example illustrates this idea.

Example 2.3. Jo has a test for a nasty disease. We denote Jo’s state of health
by the variable a and the test result by b.

a = 1 Jo has the disease
a = 0 Jo does not have the disease.

(2.12)

The result of the test is either ‘positive’ (b = 1) or ‘negative’ (b = 0);
the test is 95% reliable: in 95% of cases of people who really have the
disease, a positive result is returned, and in 95% of cases of people who
do not have the disease, a negative result is obtained. The final piece of
background information is that 1% of people of Jo’s age and background
have the disease.

OK – Jo has the test, and the result is positive. What is the probability
that Jo has the disease?

Solution. We write down all the provided probabilities. The test reliability
specifies the conditional probability of b given a:

P (b=1 | a=1) = 0.95 P (b=1 | a=0) = 0.05
P (b=0 | a=1) = 0.05 P (b=0 | a=0) = 0.95;

(2.13)

and the disease prevalence tells us about the marginal probability of a:

P (a=1) = 0.01 P (a=0) = 0.99. (2.14)

From the marginal P (a) and the conditional probability P (b | a) we can deduce
the joint probability P (a, b) = P (a)P (b | a) and any other probabilities we are
interested in. For example, by the sum rule, the marginal probability of b=1
– the probability of getting a positive result – is

P (b=1) = P (b=1 | a=1)P (a=1) + P (b=1 | a=0)P (a=0). (2.15)

Jo has received a positive result b=1 and is interested in how plausible it is
that she has the disease (i.e., that a=1). The man in the street might be
duped by the statement ‘the test is 95% reliable, so Jo’s positive result implies
that there is a 95% chance that Jo has the disease’, but this is incorrect. The
correct solution to an inference problem is found using Bayes’ theorem.

P (a=1 | b=1) =
P (b=1 | a=1)P (a=1)

P (b=1 | a=1)P (a=1) + P (b=1 | a=0)P (a=0)
(2.16)

=
0.95 × 0.01

0.95 × 0.01 + 0.05 × 0.99
(2.17)

= 0.16. (2.18)

So in spite of the positive result, the probability that Jo has the disease is only
16%. 2

�
2.2 The meaning of probability

Probabilities can be used in two ways.
Probabilities can describe frequencies of outcomes in random experiments,

but giving noncircular definitions of the terms ‘frequency’ and ‘random’ is a
challenge – what does it mean to say that the frequency of a tossed coin’s
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Box 2.4. The Cox axioms.
If a set of beliefs satisfy these
axioms then they can be mapped
onto probabilities satisfying
P (false) = 0, P (true) = 1,
0 ≤ P (x) ≤ 1, and the rules of
probability:

P (x) = 1 − P (x),
and

P (x, y) = P (x | y)P (y).

Notation. Let ‘the degree of belief in proposition x’ be denoted by B(x). The
negation of x (not-x) is written x. The degree of belief in a condi-
tional proposition, ‘x, assuming proposition y to be true’, is represented
by B(x | y).

Axiom 1. Degrees of belief can be ordered; if B(x) is ‘greater’ than B(y), and
B(y) is ‘greater’ than B(z), then B(x) is ‘greater’ than B(z).

[Consequence: beliefs can be mapped onto real numbers.]

Axiom 2. The degree of belief in a proposition x and its negation x are related.
There is a function f such that

B(x) = f [B(x)].

Axiom 3. The degree of belief in a conjunction of propositions x, y (xand y) is
related to the degree of belief in the conditional proposition x | y and the
degree of belief in the proposition y. There is a function g such that

B(x, y) = g [B(x | y), B(y)] .

coming up heads is 1/2? If we say that this frequency is the average fraction of
heads in long sequences, we have to define ‘average’; and it is hard to define
‘average’ without using a word synonymous to probability! I will not attempt
to cut this philosophical knot.

Probabilities can also be used, more generally, to describe degrees of be-

lief in propositions that do not involve random variables – for example ‘the
probability that Mr. S. was the murderer of Mrs. S., given the evidence’ (he
either was or wasn’t, and it’s the jury’s job to assess how probable it is that he
was); ‘the probability that Thomas Jefferson had a child by one of his slaves’;
‘the probability that Shakespeare’s plays were written by Francis Bacon’; or,
to pick a modern-day example, ‘the probability that a particular signature on
a particular cheque is genuine’.

The man in the street is happy to use probabilities in both these ways, but
some books on probability restrict probabilities to refer only to frequencies of
outcomes in repeatable random experiments.

Nevertheless, degrees of belief can be mapped onto probabilities if they sat-
isfy simple consistency rules known as the Cox axioms (Cox, 1946) (figure 2.4).
Thus probabilities can be used to describe assumptions, and to describe in-
ferences given those assumptions. The rules of probability ensure that if two
people make the same assumptions and receive the same data then they will
draw identical conclusions. This more general use of probability to quantify
beliefs is known as the Bayesian viewpoint. It is also known as the subjective

interpretation of probability, since the probabilities depend on assumptions.
Advocates of a Bayesian approach to data modelling and pattern recognition
do not view this subjectivity as a defect, since in their view,

you cannot do inference without making assumptions.

In this book it will from time to time be taken for granted that a Bayesian
approach makes sense, but the reader is warned that this is not yet a globally
held view – the field of statistics was dominated for most of the 20th century
by non-Bayesian methods in which probabilities are allowed to describe only
random variables. The big difference between the two approaches is that
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Bayesians also use probabilities to describe inferences.

�
2.3 Forward probabilities and inverse probabilities

Probability calculations often fall into one of two categories: forward prob-

ability and inverse probability. Here is an example of a forward probability
problem:

Exercise 2.4.[2, p.40] An urn contains K balls, of which B are black and W =
K−B are white. Fred draws a ball at random from the urn and replaces
it, N times.

(a) What is the probability distribution of the number of times a black
ball is drawn, nB?

(b) What is the expectation of nB? What is the variance of nB? What
is the standard deviation of nB? Give numerical answers for the
cases N = 5 and N = 400, when B = 2 and K = 10.

Forward probability problems involve a generative model that describes a pro-
cess that is assumed to give rise to some data; the task is to compute the
probability distribution or expectation of some quantity that depends on the
data. Here is another example of a forward probability problem:

Exercise 2.5.[2, p.40] An urn contains K balls, of which B are black and W =
K − B are white. We define the fraction fB ≡ B/K. Fred draws N
times from the urn, exactly as in exercise 2.4, obtaining nB blacks, and
computes the quantity

z =
(nB − fBN)2

NfB(1 − fB)
. (2.19)

What is the expectation of z? In the case N = 5 and fB = 1/5, what
is the probability distribution of z? What is the probability that z < 1?
[Hint: compare z with the quantities computed in the previous exercise.]

Like forward probability problems, inverse probability problems involve a
generative model of a process, but instead of computing the probability distri-
bution of some quantity produced by the process, we compute the conditional
probability of one or more of the unobserved variables in the process, given

the observed variables. This invariably requires the use of Bayes’ theorem.

Example 2.6. There are eleven urns labelled by u ∈ {0, 1, 2, . . . , 10}, each con-
taining ten balls. Urn u contains u black balls and 10 − u white balls.
Fred selects an urn u at random and draws N times with replacement
from that urn, obtaining nB blacks and N − nB whites. Fred’s friend,
Bill, looks on. If after N = 10 draws nB = 3 blacks have been drawn,
what is the probability that the urn Fred is using is urn u, from Bill’s
point of view? (Bill doesn’t know the value of u.)

Solution. The joint probability distribution of the random variables u and nB

can be written
P (u, nB |N) = P (nB |u,N)P (u). (2.20)

From the joint probability of u and nB, we can obtain the conditional
distribution of u given nB:

P (u |nB , N) =
P (u, nB |N)

P (nB |N)
(2.21)

=
P (nB |u,N)P (u)

P (nB |N)
. (2.22)
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Figure 2.5. Joint probability of u
and nB for Bill and Fred’s urn
problem, after N = 10 draws.

The marginal probability of u is P (u) = 1

11
for all u. You wrote down the

probability of nB given u and N , P (nB |u,N), when you solved exercise 2.4
(p.27). [You are doing the highly recommended exercises, aren’t you?] If we
define fu ≡ u/10 then

P (nB |u,N) =

(

N

nB

)

fnB

u (1 − fu)N−nB . (2.23)

What about the denominator, P (nB |N)? This is the marginal probability of
nB, which we can obtain using the sum rule:

P (nB |N) =
∑

u

P (u, nB |N) =
∑

u

P (u)P (nB |u,N). (2.24)

So the conditional probability of u given nB is

P (u |nB , N) =
P (u)P (nB |u,N)

P (nB |N)
(2.25)

=
1

P (nB |N)

1

11

(

N

nB

)

fnB

u (1 − fu)N−nB . (2.26)
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9 0.0000096
10 0

Figure 2.6. Conditional
probability of u given nB =3 and
N =10.

This conditional distribution can be found by normalizing column 3 of
figure 2.5 and is shown in figure 2.6. The normalizing constant, the marginal
probability of nB, is P (nB =3 |N =10) = 0.083. The posterior probability
(2.26) is correct for all u, including the end-points u=0 and u=10, where
fu = 0 and fu = 1 respectively. The posterior probability that u=0 given
nB =3 is equal to zero, because if Fred were drawing from urn 0 it would be
impossible for any black balls to be drawn. The posterior probability that
u=10 is also zero, because there are no white balls in that urn. The other
hypotheses u=1, u=2, . . . u=9 all have non-zero posterior probability. 2

Terminology of inverse probability

In inverse probability problems it is convenient to give names to the proba-
bilities appearing in Bayes’ theorem. In equation (2.25), we call the marginal
probability P (u) the prior probability of u, and P (nB |u,N) is called the like-

lihood of u. It is important to note that the terms likelihood and probability
are not synonyms. The quantity P (nB |u,N) is a function of both nB and
u. For fixed u, P (nB |u,N) defines a probability over nB. For fixed nB,
P (nB |u,N) defines the likelihood of u.
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Never say ‘the likelihood of the data’. Always say ‘the likelihood
of the parameters’. The likelihood function is not a probability
distribution.

(If you want to mention the data that a likelihood function is associated with,
you may say ‘the likelihood of the parameters given the data’.)

The conditional probability P (u |nB , N) is called the posterior probability

of u given nB. The normalizing constant P (nB |N) has no u-dependence so its
value is not important if we simply wish to evaluate the relative probabilities
of the alternative hypotheses u. However, in most data-modelling problems
of any complexity, this quantity becomes important, and it is given various
names: P (nB |N) is known as the evidence or the marginal likelihood.

If θ denotes the unknown parameters, D denotes the data, and H denotes
the overall hypothesis space, the general equation:

P (θ |D,H) =
P (D |θ,H)P (θ |H)

P (D |H)
(2.27)

is written:

posterior =
likelihood × prior

evidence
. (2.28)

Inverse probability and prediction

Example 2.6 (continued). Assuming again that Bill has observed nB = 3 blacks
in N = 10 draws, let Fred draw another ball from the same urn. What
is the probability that the next drawn ball is a black? [You should make
use of the posterior probabilities in figure 2.6.]

Solution. By the sum rule,

P (ballN+1 is black |nB, N) =
∑

u

P (ballN+1 is black |u, nB , N)P (u |nB , N).

(2.29)
Since the balls are drawn with replacement from the chosen urn, the proba-
bility P (ballN+1 is black |u, nB , N) is just fu = u/10, whatever nB and N are.
So

P (ballN+1 is black |nB, N) =
∑

u

fuP (u |nB , N). (2.30)

Using the values of P (u |nB , N) given in figure 2.6 we obtain

P (ballN+1 is black |nB =3, N =10) = 0.333. 2 (2.31)

Comment. Notice the difference between this prediction obtained using prob-
ability theory, and the widespread practice in statistics of making predictions
by first selecting the most plausible hypothesis (which here would be that the
urn is urn u = 3) and then making the predictions assuming that hypothesis
to be true (which would give a probability of 0.3 that the next ball is black).
The correct prediction is the one that takes into account the uncertainty by
marginalizing over the possible values of the hypothesis u. Marginalization
here leads to slightly more moderate, less extreme predictions.
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Inference as inverse probability

Now consider the following exercise, which has the character of a simple sci-
entific investigation.

Example 2.7. Bill tosses a bent coin N times, obtaining a sequence of heads
and tails. We assume that the coin has a probability fH of coming up
heads; we do not know fH . If nH heads have occurred in N tosses, what
is the probability distribution of fH? (For example, N might be 10, and
nH might be 3; or, after a lot more tossing, we might have N = 300 and
nH = 29.) What is the probability that the N +1th outcome will be a
head, given nH heads in N tosses?

Unlike example 2.6 (p.27), this problem has a subjective element. Given a
restricted definition of probability that says ‘probabilities are the frequencies
of random variables’, this example is different from the eleven-urns example.
Whereas the urn u was a random variable, the bias fH of the coin would not
normally be called a random variable. It is just a fixed but unknown parameter
that we are interested in. Yet don’t the two examples 2.6 and 2.7 seem to have
an essential similarity? [Especially when N = 10 and nH = 3!]

To solve example 2.7, we have to make an assumption about what the bias
of the coin fH might be. This prior probability distribution over fH , P (fH), Here P (f) denotes a probability

density, rather than a probability
distribution.

corresponds to the prior over u in the eleven-urns problem. In that example,
the helpful problem definition specified P (u). In real life, we have to make
assumptions in order to assign priors; these assumptions will be subjective,
and our answers will depend on them. Exactly the same can be said for the
other probabilities in our generative model too. We are assuming, for example,
that the balls are drawn from an urn independently; but could there not be
correlations in the sequence because Fred’s ball-drawing action is not perfectly
random? Indeed there could be, so the likelihood function that we use depends
on assumptions too. In real data modelling problems, priors are subjective and

so are likelihoods.

We are now using P () to denote probability densities over continuous vari-
ables as well as probabilities over discrete variables and probabilities of logical
propositions. The probability that a continuous variable v lies between values

a and b (where b > a) is defined to be
∫

b

a
dv P (v). P (v)dv is dimensionless.

The density P (v) is a dimensional quantity, having dimensions inverse to the
dimensions of v – in contrast to discrete probabilities, which are dimensionless.
Don’t be surprised to see probability densities greater than 1. This is normal,

and nothing is wrong, as long as
∫

b

a
dv P (v) ≤ 1 for any interval (a, b).

Conditional and joint probability densities are defined in just the same way as
conditional and joint probabilities.

. Exercise 2.8.[2 ] Assuming a uniform prior on fH , P (fH) = 1, solve the problem
posed in example 2.7 (p.30). Sketch the posterior distribution of fH and
compute the probability that the N+1th outcome will be a head, for

(a) N = 3 and nH = 0;

(b) N = 3 and nH = 2;

(c) N = 10 and nH = 3;

(d) N = 300 and nH = 29.

You will find the beta integral useful:
∫ 1

0

dpa pFa

a (1 − pa)
Fb =

Γ(Fa + 1)Γ(Fb + 1)

Γ(Fa + Fb + 2)
=

Fa!Fb!

(Fa + Fb + 1)!
. (2.32)
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You may also find it instructive to look back at example 2.6 (p.27) and
equation (2.31).

People sometimes confuse assigning a prior distribution to an unknown pa-
rameter such as fH with making an initial guess of the value of the parameter.
But the prior over fH , P (fH), is not a simple statement like ‘initially, I would
guess fH = 1/2’. The prior is a probability density over fH which specifies the
prior degree of belief that fH lies in any interval (f, f + δf). It may well be
the case that our prior for fH is symmetric about 1/2, so that the mean of fH

under the prior is 1/2. In this case, the predictive distribution for the first toss

x1 would indeed be

P (x1 =head) =

∫

dfH P (fH)P (x1 =head | fH) =

∫

dfH P (fH)fH = 1/2.

(2.33)
But the prediction for subsequent tosses will depend on the whole prior dis-
tribution, not just its mean.

Data compression and inverse probability

Consider the following task.

Example 2.9. Write a computer program capable of compressing binary files
like this one:

0000000000000000000010010001000000100000010000000000000000000000000000000000001010000000000000110000

1000000000010000100000000010000000000000000000000100000000000000000100000000011000001000000011000100

0000000001001000000000010001000000000000000011000000000000000000000000000010000000000000000100000000

The string shown contains n1 = 29 1s and n0 = 271 0s.

Intuitively, compression works by taking advantage of the predictability of a
file. In this case, the source of the file appears more likely to emit 0s than
1s. A data compression program that compresses this file must, implicitly or
explicitly, be addressing the question ‘What is the probability that the next
character in this file is a 1?’

Do you think this problem is similar in character to example 2.7 (p.30)?
I do. One of the themes of this book is that data compression and data
modelling are one and the same, and that they should both be addressed, like
the urn of example 2.6, using inverse probability. Example 2.9 is solved in
Chapter 6.

The likelihood principle

Please solve the following two exercises.

Example 2.10. Urn A contains three balls: one black, and two white; urn B

A B

Figure 2.7. Urns for example 2.10.

contains three balls: two black, and one white. One of the urns is
selected at random and one ball is drawn. The ball is black. What is
the probability that the selected urn is urn A?

Example 2.11. Urn A contains five balls: one black, two white, one green and

...

...

...
g p

c

y

s

g
p

Figure 2.8. Urns for example 2.11.

one pink; urn B contains five hundred balls: two hundred black, one
hundred white, 50 yellow, 40 cyan, 30 sienna, 25 green, 25 silver, 20
gold, and 10 purple. [One fifth of A’s balls are black; two-fifths of B’s
are black.] One of the urns is selected at random and one ball is drawn.
The ball is black. What is the probability that the urn is urn A?
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What do you notice about your solutions? Does each answer depend on the
detailed contents of each urn?

The details of the other possible outcomes and their probabilities are ir-
relevant. All that matters is the probability of the outcome that actually
happened (here, that the ball drawn was black) given the different hypothe-
ses. We need only to know the likelihood, i.e., how the probability of the data
that happened varies with the hypothesis. This simple rule about inference is
known as the likelihood principle.

The likelihood principle: given a generative model for data d given
parameters θ, P (d |θ), and having observed a particular outcome
d1, all inferences and predictions should depend only on the function
P (d1 |θ).

In spite of the simplicity of this principle, many classical statistical methods
violate it.

�
2.4 Definition of entropy and related functions

The Shannon information content of an outcome x is defined to be

h(x) = log2

1

P (x)
. (2.34)

It is measured in bits. [The word ‘bit’ is also used to denote a variable
whose value is 0 or 1; I hope context will always make clear which of the
two meanings is intended.]

In the next few chapters, we will establish that the Shannon information
content h(ai) is indeed a natural measure of the information content
of the event x = ai. At that point, we will shorten the name of this
quantity to ‘the information content’.

i ai pi h(pi)

1 a .0575 4.1
2 b .0128 6.3
3 c .0263 5.2
4 d .0285 5.1
5 e .0913 3.5
6 f .0173 5.9
7 g .0133 6.2
8 h .0313 5.0
9 i .0599 4.1
10 j .0006 10.7
11 k .0084 6.9
12 l .0335 4.9
13 m .0235 5.4
14 n .0596 4.1
15 o .0689 3.9
16 p .0192 5.7
17 q .0008 10.3
18 r .0508 4.3
19 s .0567 4.1
20 t .0706 3.8
21 u .0334 4.9
22 v .0069 7.2
23 w .0119 6.4
24 x .0073 7.1
25 y .0164 5.9
26 z .0007 10.4
27 - .1928 2.4

∑

i

pi log
2

1

pi

4.1

Table 2.9. Shannon information
contents of the outcomes a–z.

The fourth column in table 2.9 shows the Shannon information content
of the 27 possible outcomes when a random character is picked from
an English document. The outcome x = z has a Shannon information
content of 10.4 bits, and x = e has an information content of 3.5 bits.

The entropy of an ensemble X is defined to be the average Shannon in-
formation content of an outcome:

H(X) ≡
∑

x∈AX

P (x) log
1

P (x)
, (2.35)

with the convention for P (x) = 0 that 0 × log 1/0 ≡ 0, since
limθ→0+ θ log 1/θ = 0.

Like the information content, entropy is measured in bits.

When it is convenient, we may also write H(X) as H(p), where p is
the vector (p1, p2, . . . , pI). Another name for the entropy of X is the
uncertainty of X.

Example 2.12. The entropy of a randomly selected letter in an English docu-
ment is about 4.11 bits, assuming its probability is as given in table 2.9.
We obtain this number by averaging log 1/pi (shown in the fourth col-
umn) under the probability distribution pi (shown in the third column).
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We now note some properties of the entropy function.

• H(X) ≥ 0 with equality iff pi = 1 for one i. [‘iff’ means ‘if and only if’.]

• Entropy is maximized if p is uniform:

H(X) ≤ log(|AX |) with equality iff pi = 1/|AX | for all i. (2.36)

Notation: the vertical bars ‘| · |’ have two meanings. If AX is a set, |AX |
denotes the number of elements in AX ; if x is a number, then |x| is the
absolute value of x.

The redundancy measures the fractional difference between H(X) and its max-
imum possible value, log(|AX |).

The redundancy of X is:

1 −
H(X)

log |AX |
. (2.37)

We won’t make use of ‘redundancy’ in this book, so I have not assigned
a symbol to it.

The joint entropy of X,Y is:

H(X,Y ) =
∑

xy∈AXAY

P (x, y) log
1

P (x, y)
. (2.38)

Entropy is additive for independent random variables:

H(X,Y ) = H(X) + H(Y ) iff P (x, y) = P (x)P (y). (2.39)

Our definitions for information content so far apply only to discrete probability
distributions over finite sets AX . The definitions can be extended to infinite
sets, though the entropy may then be infinite. The case of a probability
density over a continuous set is addressed in section 11.3. Further important
definitions and exercises to do with entropy will come along in section 8.1.

�
2.5 Decomposability of the entropy

The entropy function satisfies a recursive property that can be very useful
when computing entropies. For convenience, we’ll stretch our notation so that
we can write H(X) as H(p), where p is the probability vector associated with
the ensemble X.

Let’s illustrate the property by an example first. Imagine that a random
variable x ∈ {0, 1, 2} is created by first flipping a fair coin to determine whether
x = 0; then, if x is not 0, flipping a fair coin a second time to determine whether
x is 1 or 2. The probability distribution of x is

P (x=0) =
1

2
; P (x=1) =

1

4
; P (x=2) =

1

4
. (2.40)

What is the entropy of X? We can either compute it by brute force:

H(X) = 1/2 log 2 + 1/4 log 4 + 1/4 log 4 = 1.5; (2.41)

or we can use the following decomposition, in which the value of x is revealed
gradually. Imagine first learning whether x=0, and then, if x is not 0, learning
which non-zero value is the case. The revelation of whether x=0 or not entails
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revealing a binary variable whose probability distribution is {1/2, 1/2}. This
revelation has an entropy H(1/2, 1/2) = 1

2
log 2 + 1

2
log 2 = 1bit. If x is not 0,

we learn the value of the second coin flip. This too is a binary variable whose
probability distribution is {1/2, 1/2}, and whose entropy is 1 bit. We only get
to experience the second revelation half the time, however, so the entropy can
be written:

H(X) = H(1/2, 1/2) + 1/2 H(1/2, 1/2). (2.42)

Generalizing, the observation we are making about the entropy of any
probability distribution p = {p1, p2, . . . , pI} is that

H(p) = H(p1, 1−p1) + (1−p1)H

(

p2

1−p1

,
p3

1−p1

, . . . ,
pI

1−p1

)

. (2.43)

When it’s written as a formula, this property looks regrettably ugly; nev-
ertheless it is a simple property and one that you should make use of.

Generalizing further, the entropy has the property for any m that

H(p) = H [(p1 + p2 + · · · + pm), (pm+1 + pm+2 + · · · + pI)]

+(p1 + · · · + pm)H

(

p1

(p1 + · · · + pm)
, . . . ,

pm

(p1 + · · · + pm)

)

+(pm+1 + · · · + pI)H

(

pm+1

(pm+1 + · · · + pI)
, . . . ,

pI

(pm+1 + · · · + pI)

)

.

(2.44)

Example 2.13. A source produces a character x from the alphabet A =
{0, 1, . . . , 9, a, b, . . . , z}; with probability 1/3, x is a numeral (0, . . . , 9);
with probability 1/3, x is a vowel (a, e, i, o, u); and with probability 1/3

it’s one of the 21 consonants. All numerals are equiprobable, and the
same goes for vowels and consonants. Estimate the entropy of X.

Solution. log 3 + 1

3
(log 10 + log 5 + log 21) = log 3 + 1

3
log 1050 ' log 30 bits. 2

�
2.6 Gibbs’ inequality

The ‘ei’ in Leibler is pronounced
the same as in heist.The relative entropy or Kullback–Leibler divergence between two

probability distributions P (x) and Q(x) that are defined over the same
alphabet AX is

DKL(P ||Q) =
∑

x

P (x) log
P (x)

Q(x)
. (2.45)

The relative entropy satisfies Gibbs’ inequality

DKL(P ||Q) ≥ 0 (2.46)

with equality only if P = Q. Note that in general the relative entropy
is not symmetric under interchange of the distributions P and Q: in
general DKL(P ||Q) 6= DKL(Q||P ), so DKL, although it is sometimes
called the ‘KL distance’, is not strictly a distance. The relative entropy
is important in pattern recognition and neural networks, as well as in
information theory.

Gibbs’ inequality is probably the most important inequality in this book. It,
and many other inequalities, can be proved using the concept of convexity.
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2.7: Jensen’s inequality for convex functions 35

�
2.7 Jensen’s inequality for convex functions

The words ‘convex ^’ and ‘concave _’ may be pronounced ‘convex-smile’ and
‘concave-frown’. This terminology has useful redundancy: while one may forget
which way up ‘convex’ and ‘concave’ are, it is harder to confuse a smile with a
frown.

Convex^ functions. A function f(x) is convex^ over (a, b) if every chord

x1 x2

x∗ = λx1 + (1 − λ)x2

f(x∗)

λf(x1) + (1 − λ)f(x2)

Figure 2.10. Definition of
convexity.

of the function lies above the function, as shown in figure 2.10; that is,
for all x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1,

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2). (2.47)

A function f is strictly convex^ if, for all x1, x2 ∈ (a, b), the equality
holds only for λ = 0 and λ = 1.

Similar definitions apply to concave_ and strictly concave_ functions.

Some strictly convex^ functions are

• x2, ex and e−x for all x;

• log(1/x) and x log x for x > 0.

x2

-1 0 1 2 3

e−x

-1 0 1 2 3

log 1

x

0 1 2 3

x log x

0 1 2 3

Figure 2.11. Convex ^ functions.

Jensen’s inequality. If f is a convex^ function and x is a random variable
then:

E [f(x)] ≥ f(E [x]) , (2.48)

where E denotes expectation. If f is strictly convex^ and E [f(x)] =
f(E [x]), then the random variable x is a constant.

Jensen’s inequality can also be rewritten for a concave_ function, with
the direction of the inequality reversed.

A physical version of Jensen’s inequality runs as follows.

Centre of gravity

If a collection of masses pi are placed on a convex^ curve f(x)
at locations (xi, f(xi)), then the centre of gravity of those masses,
which is at (E [x], E [f(x)]), lies above the curve.

If this fails to convince you, then feel free to do the following exercise.

Exercise 2.14.[2, p.41] Prove Jensen’s inequality.

Example 2.15. Three squares have average area Ā = 100m2. The average of
the lengths of their sides is l̄ = 10m. What can be said about the size
of the largest of the three squares? [Use Jensen’s inequality.]

Solution. Let x be the length of the side of a square, and let the probability
of x be 1/3, 1/3, 1/3 over the three lengths l1, l2, l3. Then the information that
we have is that E [x] = 10 and E [f(x)] = 100, where f(x) = x2 is the function
mapping lengths to areas. This is a strictly convex^ function. We notice
that the equality E [f(x)] = f(E [x]) holds, therefore x is a constant, and the
three lengths must all be equal. The area of the largest square is 100m2. 2
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Convexity and concavity also relate to maximization

If f(x) is concave_ and there exists a point at which

∂f

∂xk

= 0 for all k, (2.49)

then f(x) has its maximum value at that point.
The converse does not hold: if a concave_ f(x) is maximized at some x

it is not necessarily true that the gradient ∇f(x) is equal to zero there. For
example, f(x) = −|x| is maximized at x = 0 where its derivative is undefined;
and f(p) = log(p), for a probability p ∈ (0, 1), is maximized on the boundary
of the range, at p = 1, where the gradient df(p)/dp = 1.

�
2.8 Exercises

Sums of random variables

Exercise 2.16.[3, p.41] (a) Two ordinary dice with faces labelled 1, . . . , 6 are
thrown. What is the probability distribution of the sum of the val-
ues? What is the probability distribution of the absolute difference
between the values?

(b) One hundred ordinary dice are thrown. What, roughly, is the prob- This exercise is intended to help
you think about the central-limit
theorem, which says that if
independent random variables
x1, x2, . . . , xN have means µn and
finite variances σ2

n, then, in the
limit of large N , the sum

∑

n
xn

has a distribution that tends to a
normal (Gaussian) distribution
with mean

∑

n
µn and variance

∑

n
σ2

n
.

ability distribution of the sum of the values? Sketch the probability
distribution and estimate its mean and standard deviation.

(c) How can two cubical dice be labelled using the numbers
{0, 1, 2, 3, 4, 5, 6} so that when the two dice are thrown the sum
has a uniform probability distribution over the integers 1–12?

(d) Is there any way that one hundred dice could be labelled with inte-
gers such that the probability distribution of the sum is uniform?

Inference problems

Exercise 2.17.[2, p.41] If q = 1 − p and a = ln p/q, show that

p =
1

1 + exp(−a)
. (2.50)

Sketch this function and find its relationship to the hyperbolic tangent
function tanh(u) = eu−e−u

eu+e−u .

It will be useful to be fluent in base-2 logarithms also. If b = log2 p/q,
what is p as a function of b?

. Exercise 2.18.[2, p.42] Let x and y be dependent random variables with x a
binary variable taking values in AX = {0, 1}. Use Bayes’ theorem to
show that the log posterior probability ratio for x given y is

log
P (x=1 | y)

P (x=0 | y)
= log

P (y |x=1)

P (y |x=0)
+ log

P (x=1)

P (x=0)
. (2.51)

. Exercise 2.19.[2, p.42] Let x, d1 and d2 be random variables such that d1 and
d2 are conditionally independent given a binary variable x. Use Bayes’
theorem to show that the posterior probability ratio for x given {di} is

P (x=1 | {di})

P (x=0 | {di})
=

P (d1 |x=1)

P (d1 |x=0)

P (d2 |x=1)

P (d2 |x=0)

P (x=1)

P (x=0)
. (2.52)
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Life in high-dimensional spaces

Probability distributions and volumes have some unexpected properties in
high-dimensional spaces.

Exercise 2.20.[2, p.42] Consider a sphere of radius r in an N -dimensional real
space. Show that the fraction of the volume of the sphere that is in the
surface shell lying at values of the radius between r − ε and r, where
0 < ε < r, is:

f = 1 −
(

1 −
ε

r

)N

. (2.53)

Evaluate f for the cases N =2, N =10 and N =1000, with (a) ε/r =0.01;
(b) ε/r =0.5.

Implication: points that are uniformly distributed in a sphere in N di-
mensions, where N is large, are very likely to be in a thin shell near the
surface.

Expectations and entropies

You are probably familiar with the idea of computing the expectation of a
function of x,

E [f(x)] = 〈f(x)〉 =
∑

x

P (x)f(x). (2.54)

Maybe you are not so comfortable with computing this expectation in cases
where the function f(x) depends on the probability P (x). The next few ex-
amples address this concern.

Exercise 2.21.[1, p.43] Let pa =0.1, pb =0.2, and pc =0.7. Let f(a)=10,
f(b)=5, and f(c)=10/7. What is E [f(x)]? What is E [1/P (x)]?

Exercise 2.22.[2, p.43] For an arbitrary ensemble, what is E [1/P (x)]?

. Exercise 2.23.[1, p.43] Let pa =0.1, pb =0.2, and pc =0.7. Let g(a)=0, g(b)=1,
and g(c)= 0. What is E [g(x)]?

. Exercise 2.24.[1, p.43] Let pa =0.1, pb =0.2, and pc =0.7. What is the proba-
bility that P (x) ∈ [0.15, 0.5]? What is

P

(∣

∣

∣

∣

log
P (x)

0.2

∣

∣

∣

∣

> 0.05

)

?

Exercise 2.25.[3, p.43] Prove the assertion that H(X) ≤ log(|AX |) with equal-
ity iff pi = 1/|AX | for all i. (|AX | denotes the number of elements in
the set AX .) [Hint: use Jensen’s inequality (2.48); if your first attempt
to use Jensen does not succeed, remember that Jensen involves both a
random variable and a function, and you have quite a lot of freedom in
choosing these; think about whether your chosen function f should be
convex or concave.]

. Exercise 2.26.[3, p.44] Prove that the relative entropy (equation (2.45)) satisfies
DKL(P ||Q) ≥ 0 (Gibbs’ inequality) with equality only if P = Q.

. Exercise 2.27.[2 ] Prove that the entropy is indeed decomposable as described
in equations (2.43–2.44).
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. Exercise 2.28.[2, p.45] A random variable x ∈ {0, 1, 2, 3} is selected by flipping
a bent coin with bias f to determine whether the outcome is in {0, 1} or
{2, 3}; then either flipping a second bent coin with bias g or a third bent

f

1−f

�
�

��

@
@

@R

�
��

@
@R

g

1−g

h

1−h

�
��

@
@R

0

1

2

3

coin with bias h respectively. Write down the probability distribution
of x. Use the decomposability of the entropy (2.44) to find the entropy
of X. [Notice how compact an expression is obtained if you make use
of the binary entropy function H2(x), compared with writing out the
four-term entropy explicitly.] Find the derivative of H(X) with respect
to f . [Hint: dH2(x)/dx = log((1 − x)/x).]

. Exercise 2.29.[2, p.45] An unbiased coin is flipped until one head is thrown.
What is the entropy of the random variable x ∈ {1, 2, 3, . . .}, the num-
ber of flips? Repeat the calculation for the case of a biased coin with
probability f of coming up heads. [Hint: solve the problem both directly
and by using the decomposability of the entropy (2.43).]

�
2.9 Further exercises

Forward probability

. Exercise 2.30.[1 ] An urn contains w white balls and b black balls. Two balls
are drawn, one after the other, without replacement. Prove that the
probability that the first ball is white is equal to the probability that the
second is white.

. Exercise 2.31.[2 ] A circular coin of diameter a is thrown onto a square grid
whose squares are b × b. (a < b) What is the probability that the coin
will lie entirely within one square? [Ans: (1 − a/b)2]

. Exercise 2.32.[3 ] Buffon’s needle. A needle of length a is thrown onto a plane
covered with equally spaced parallel lines with separation b. What is
the probability that the needle will cross a line? [Ans, if a < b: 2a/πb]
[Generalization – Buffon’s noodle: on average, a random curve of length
A is expected to intersect the lines 2A/πb times.]

Exercise 2.33.[2 ] Two points are selected at random on a straight line segment
of length 1. What is the probability that a triangle can be constructed
out of the three resulting segments?

Exercise 2.34.[2, p.45] An unbiased coin is flipped until one head is thrown.
What is the expected number of tails and the expected number of heads?

Fred, who doesn’t know that the coin is unbiased, estimates the bias
using f̂ ≡ h/(h + t), where h and t are the numbers of heads and tails
tossed. Compute and sketch the probability distribution of f̂ .

N.B., this is a forward probability problem, a sampling theory problem,
not an inference problem. Don’t use Bayes’ theorem.

Exercise 2.35.[2, p.45] Fred rolls an unbiased six-sided die once per second, not-
ing the occasions when the outcome is a six.

(a) What is the mean number of rolls from one six to the next six?

(b) Between two rolls, the clock strikes one. What is the mean number
of rolls until the next six?
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(c) Now think back before the clock struck. What is the mean number
of rolls, going back in time, until the most recent six?

(d) What is the mean number of rolls from the six before the clock
struck to the next six?

(e) Is your answer to (d) different from your answer to (a)? Explain.

Another version of this exercise refers to Fred waiting for a bus at a
bus-stop in Poissonville where buses arrive independently at random (a
Poisson process), with, on average, one bus every six minutes. What is
the average wait for a bus, after Fred arrives at the stop? [6 minutes.] So
what is the time between the two buses, the one that Fred just missed,
and the one that he catches? [12 minutes.] Explain the apparent para-
dox. Note the contrast with the situation in Clockville, where the buses
are spaced exactly 6 minutes apart. There, as you can confirm, the mean
wait at a bus-stop is 3 minutes, and the time between the missed bus
and the next one is 6 minutes.

Conditional probability

. Exercise 2.36.[2 ] You meet Fred. Fred tells you he has two brothers, Alf and
Bob.

What is the probability that Fred is older than Bob?

Fred tells you that he is older than Alf. Now, what is the probability
that Fred is older than Bob? (That is, what is the conditional probability
that F > B given that F > A?)

. Exercise 2.37.[2 ] The inhabitants of an island tell the truth one third of the
time. They lie with probability 2/3.

On an occasion, after one of them made a statement, you ask another
‘was that statement true?’ and he says ‘yes’.

What is the probability that the statement was indeed true?

. Exercise 2.38.[2, p.46] Compare two ways of computing the probability of error
of the repetition code R3, assuming a binary symmetric channel (you
did this once for exercise 1.2 (p.7)) and confirm that they give the same
answer.

Binomial distribution method. Add the probability that all three
bits are flipped to the probability that exactly two bits are flipped.

Sum rule method. Using the sum rule, compute the marginal prob-
ability that r takes on each of the eight possible values, P (r).
[P (r) =

∑

s P (s)P (r | s).] Then compute the posterior probabil-
ity of s for each of the eight values of r. [In fact, by symmetry,
only two example cases r = (000) and r = (001) need be consid-
ered.] Notice that some of the inferred bits are better determined Equation (1.18) gives the

posterior probability of the input
s, given the received vector r.

than others. From the posterior probability P (s | r) you can read
out the case-by-case error probability, the probability that the more
probable hypothesis is not correct, P (error | r). Find the average
error probability using the sum rule,

P (error) =
∑

r

P (r)P (error | r). (2.55)
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. Exercise 2.39.[3C, p.46] The frequency pn of the nth most frequent word in
English is roughly approximated by

pn '

{

0.1
n

for n ∈ 1, . . . , 12 367
0 n > 12 367.

(2.56)

[This remarkable 1/n law is known as Zipf’s law, and applies to the word
frequencies of many languages (Zipf, 1949).] If we assume that English
is generated by picking words at random according to this distribution,
what is the entropy of English (per word)? [This calculation can be found
in ‘Prediction and entropy of printed English’, C.E. Shannon, Bell Syst.

Tech. J. 30, pp.50–64 (1950), but, inexplicably, the great man made
numerical errors in it.]

�
2.10 Solutions

Solution to exercise 2.2 (p.24). No, they are not independent. If they were
then all the conditional distributions P (y |x) would be identical functions of
y, regardless of x (cf. figure 2.3).

Solution to exercise 2.4 (p.27). We define the fraction fB ≡ B/K.

(a) The number of black balls has a binomial distribution.

P (nB | fB, N) =

(

N

nB

)

fnB

B (1 − fB)N−nB . (2.57)

(b) The mean and variance of this distribution are:

E [nB] = NfB (2.58)

var[nB] = NfB(1 − fB). (2.59)

These results were derived in example 1.1 (p.1). The standard deviation
of nB is

√

var[nB] =
√

NfB(1 − fB).

When B/K = 1/5 and N = 5, the expectation and variance of nB are 1
and 4/5. The standard deviation is 0.89.

When B/K = 1/5 and N = 400, the expectation and variance of nB are
80 and 64. The standard deviation is 8.

Solution to exercise 2.5 (p.27). The numerator of the quantity

z =
(nB − fBN)2

NfB(1 − fB)

can be recognized as (nB − E [nB])2; the denominator is equal to the variance
of nB (2.59), which is by definition the expectation of the numerator. So the
expectation of z is 1. [A random variable like z, which measures the deviation
of data from the expected value, is sometimes called χ2 (chi-squared).]

In the case N = 5 and fB = 1/5, NfB is 1, and var[nB ] is 4/5. The
numerator has five possible values, only one of which is smaller than 1: (nB −
fBN)2 = 0 has probability P (nB =1) = 0.4096; so the probability that z < 1
is 0.4096.


