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About Chapter 14

In this chapter we will draw together several ideas that we’ve encountered
so far in one nice short proof. We will simultaneously prove both Shannon’s
noisy-channel coding theorem (for symmetric binary channels) and his source
coding theorem (for binary sources). While this proof has connections to many
preceding chapters in the book, it’s not essential to have read them all.

On the noisy-channel coding side, our proof will be more constructive than
the proof given in Chapter 10; there, we proved that almost any random code
is ‘very good’. Here we will show that almost any linear code is very good. We
will make use of the idea of typical sets (Chapters 4 and 10), and we’ll borrow
from the previous chapter’s calculation of the weight enumerator function of
random linear codes (section 13.5).

On the source coding side, our proof will show that random linear hash

functions can be used for compression of compressible binary sources, thus
giving a link to Chapter 12.
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14

Very Good Linear Codes Exist

In this chapter we’ll use a single calculation to prove simultaneously the source
coding theorem and the noisy-channel coding theorem for the binary symmet-
ric channel.

Incidentally, this proof works for much more general channel models, not
only the binary symmetric channel. For example, the proof can be reworked
for channels with non-binary outputs, for time-varying channels and for chan-
nels with memory, as long as they have binary inputs satisfying a symmetry
property, cf. section 10.6.

�
14.1 A simultaneous proof of the source coding and noisy-channel

coding theorems

We consider a linear error-correcting code with binary parity-check matrix H.
The matrix has M rows and N columns. Later in the proof we will increase
N and M , keeping M ∝ N . The rate of the code satisfies

R ≥ 1 −
M

N
. (14.1)

If all the rows of H are independent then this is an equality, R = 1 − M/N .
In what follows, we’ll assume the equality holds. Eager readers may work out
the expected rank of a random binary matrix H (it’s very close to M) and
pursue the effect that the difference (M − rank) has on the rest of this proof
(it’s negligible).

A codeword t is selected, satisfying

Ht = 0mod2, (14.2)

and a binary symmetric channel adds noise x, giving the received signal In this chapter x denotes the
noise added by the channel, not
the input to the channel.r = t + xmod2. (14.3)

The receiver aims to infer both t and x from r using a syndrome-decoding
approach. Syndrome decoding was first introduced in section 1.2 (p.10 and
11). The receiver computes the syndrome

z = Hrmod2 = Ht + Hxmod2 = Hxmod2. (14.4)

The syndrome only depends on the noise x, and the decoding problem is to
find the most probable x that satisfies

Hx = zmod2. (14.5)
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230 14 — Very Good Linear Codes Exist

This best estimate for the noise vector, x̂, is then subtracted from r to give the
best guess for t. Our aim is to show that, as long as R < 1−H(X) = 1−H2(f),
where f is the flip probability of the binary symmetric channel, the optimal
decoder for this syndrome-decoding problem has vanishing probability of error,
as N increases, for random H.

We prove this result by studying a sub-optimal strategy for solving the
decoding problem. Neither the optimal decoder nor this typical-set decoder

would be easy to implement, but the typical-set decoder is easier to analyze.
The typical-set decoder examines the typical set T of noise vectors, the set
of noise vectors x

′ that satisfy log 1/P (x′) ' NH(X), checking to see if any of We’ll leave out the εs and βs that
make a typical-set definition
rigorous. Enthusiasts are
encouraged to revisit section 4.4
and put these details into this
proof.

those typical vectors x
′ satisfies the observed syndrome,

Hx
′ = z. (14.6)

If exactly one typical vector x
′ does so, the typical set decoder reports that

vector as the hypothesized noise vector. If no typical vector matches the
observed syndrome, or more than one does, then the typical set decoder reports
an error.

The probability of error of the typical-set decoder, for a given matrix H,
can be written as a sum of two terms,

PTS|H = P (I) + P
(II)
TS|H

, (14.7)

where P (I) is the probability that the true noise vector x is itself not typical,

and P
(II)
TS|H is the probability that the true x is typical and at least one other

typical vector clashes with it. The first probability vanishes as N increases, as
we proved when we first studied typical sets (Chapter 4). We concentrate on
the second probability. To recap, we’re imagining a true noise vector, x; and
if any of the typical noise vectors x

′, different from x, satisfies H(x′ − x) = 0,
then we have an error. We use the truth function

� [
H(x′ − x) = 0

]

, (14.8)

whose value is one if the statement H(x′ − x) = 0 is true and zero otherwise.
We can bound the number of type II errors made when the noise is x thus:

[Number of errors given x and H] ≤
∑

x′:
x

′ ∈ T

x
′ 6= x

� [
H(x′ − x) = 0

]

. (14.9)

The number of errors is either zero or one; the sum on the right-hand side
may exceed one, in cases where several typical noise vectors have the same Equation (14.9) is a union bound.

syndrome.
We can now write down the probability of a type-II error by averaging over

x:
P

(II)
TS|H ≤

∑

x∈T

P (x)
∑

x′:
x

′ ∈ T

x
′ 6= x

� [
H(x′ − x) = 0

]

. (14.10)

Now, we will find the average of this probability of type-II error over all linear
codes by averaging over H. By showing that the average probability of type-II
error vanishes, we will thus show that there exist linear codes with vanishing
error probability, indeed, that almost all linear codes are very good.

We denote averaging over all binary matrices H by 〈. . .〉
H

. The average
probability of type-II error is

P̄
(II)
TS =

∑

H

P (H)P
(II)
TS|H =

〈

P
(II)
TS|H

〉

H

(14.11)
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14.2: Data compression by linear hash codes 231

=

〈

∑

x∈T

P (x)
∑

x′:
x

′ ∈ T

x
′ 6= x

� [
H(x′ − x) = 0

]

〉

H

(14.12)

=
∑

x∈T

P (x)
∑

x′:
x

′ ∈ T

x
′ 6= x

〈 � [
H(x′ − x) = 0

]〉

H
. (14.13)

Now, the quantity 〈
�
[H(x′ − x) = 0]〉

H
already cropped up when we were

calculating the expected weight enumerator function of random linear codes
(section 13.5): for any non-zero binary vector v, the probability that Hv = 0,
averaging over all matrices H, is 2−M . So

P̄
(II)
TS =

(

∑

x∈T

P (x)

)

(|T | − 1) 2−M (14.14)

≤ |T | 2−M , (14.15)

where |T | denotes the size of the typical set. As you will recall from Chapter
4, there are roughly 2NH(X) noise vectors in the typical set. So

P̄
(II)
TS ≤ 2NH(X)2−M . (14.16)

This bound on the probability of error either vanishes or grows exponentially
as N increases (remembering that we are keeping M proportional to N as N
increases). It vanishes if

H(X) < M/N. (14.17)

Substituting R = 1−M/N , we have thus established the noisy-channel coding
theorem for the binary symmetric channel: very good linear codes exist for
any rate R satisfying

R < 1 − H(X), (14.18)

where H(X) is the entropy of the channel noise, per bit. 2

Exercise 14.1.
[3 ] Redo the proof for a more general channel.

�
14.2 Data compression by linear hash codes

The decoding game we have just played can also be viewed as an uncompres-

sion game. The world produces a binary noise vector x from a source P (x).
The noise has redundancy (if the flip probability is not 0.5). We compress it
with a linear compressor that maps the N -bit input x (the noise) to the M -bit
output z (the syndrome). Our uncompression task is to recover the input x

from the output z. The rate of the compressor is

Rcompressor ≡ M/N. (14.19)

[We don’t care about the possibility of linear redundancies in our definition
of the rate, here.] The result that we just found, that the decoding problem
can be solved, for almost any H, with vanishing error probability, as long as
H(X) < M/N , thus instantly proves a source coding theorem:

Given a binary source X of entropy H(X), and a required com-
pressed rate R > H(X), there exists a linear compressor x → z =
Hxmod2 having rate M/N equal to that required rate R, and an
associated uncompressor, that is virtually lossless.

This theorem is true not only for a source of independent identically dis-
tributed symbols but also for any source for which a typical set can be de-
fined: sources with memory, and time-varying sources, for example; all that’s
required is that the source be ergodic.
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Notes

This method for proving that codes are good can be applied to other linear
codes, such as low-density parity-check codes (MacKay, 1999b; Aji et al., 2000).
For each code we need an approximation of its expected weight enumerator
function.


