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15

Further Exercises on Information Theory

The most exciting exercises, which will introduce you to further ideas in in-
formation theory, are towards the end of this chapter.

Refresher exercises on source coding and noisy channels

. Exercise 15.1.[2 ] Let X be an ensemble with AX = {0, 1} and PX =
{0.995, 0.005}. Consider source coding using the block coding of X 100

where every x ∈ X100 containing 3 or fewer 1s is assigned a distinct
codeword, while the other xs are ignored.

(a) If the assigned codewords are all of the same length, find the min-
imum length required to provide the above set with distinct code-
words.

(b) Calculate the probability of getting an x that will be ignored.

. Exercise 15.2.[2 ] Let X be an ensemble with PX = {0.1, 0.2, 0.3, 0.4}. The en-
semble is encoded using the symbol code C = {0001, 001, 01, 1}. Consider
the codeword corresponding to x ∈ XN , where N is large.

(a) Compute the entropy of the fourth bit of transmission.

(b) Compute the conditional entropy of the fourth bit given the third
bit.

(c) Estimate the entropy of the hundredth bit.

(d) Estimate the conditional entropy of the hundredth bit given the
ninety-ninth bit.

Exercise 15.3.[2 ] Two fair dice are rolled by Alice and the sum is recorded.
Bob’s task is to ask a sequence of questions with yes/no answers to find
out this number. Devise in detail a strategy that achieves the minimum
possible average number of questions.

. Exercise 15.4.[2 ] How can you use a coin to draw straws among 3 people?

. Exercise 15.5.[2 ] In a magic trick, there are three participants: the magician,
an assistant, and a volunteer. The assistant, who claims to have paranor-
mal abilities, is in a soundproof room. The magician gives the volunteer
six blank cards, five white and one blue. The volunteer writes a dif-
ferent integer from 1 to 100 on each card, as the magician is watching.
The volunteer keeps the blue card. The magician arranges the five white
cards in some order and passes them to the assistant. The assistant then
announces the number on the blue card.

How does the trick work?
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. Exercise 15.6.[3 ] How does this trick work?

‘Here’s an ordinary pack of cards, shuffled into random order.
Please choose five cards from the pack, any that you wish.
Don’t let me see their faces. No, don’t give them to me: pass
them to my assistant Esmerelda. She can look at them.

‘Now, Esmerelda, show me four of the cards. Hmm. . . nine
of spades, six of clubs, four of hearts, ten of diamonds. The
hidden card, then, must be the queen of spades!’

The trick can be performed as described above for a pack of 52 cards.
Use information theory to give an upper bound on the number of cards
for which the trick can be performed.

. Exercise 15.7.[2 ] Find a probability sequence p = (p1, p2, . . .) such that
H(p) = ∞.

. Exercise 15.8.[2 ] Consider a discrete memoryless source with AX = {a, b, c, d}
and PX = {1/2, 1/4, 1/8, 1/8}. There are 48 = 65 536 eight-letter words
that can be formed from the four letters. Find the total number of such
words that are in the typical set TNβ (equation 4.29) where N = 8 and
β = 0.1.

. Exercise 15.9.[2 ] Consider the source AS = {a, b, c, d, e}, PS =
{1/3, 1/3, 1/9, 1/9, 1/9} and the channel whose transition probability matrix
is

Q =









1 0 0 0
0 0 2/3 0
0 1 0 1
0 0 1/3 0









. (15.1)

Note that the source alphabet has five symbols, but the channel alphabet
AX = AY = {0, 1, 2, 3} has only four. Assume that the source produces
symbols at exactly 3/4 the rate that the channel accepts channel sym-
bols. For a given (tiny) ε > 0, explain how you would design a system
for communicating the source’s output over the channel with an aver-
age error probability per source symbol less than ε. Be as explicit as
possible. In particular, do not invoke Shannon’s noisy-channel coding
theorem.

. Exercise 15.10.[2 ] Consider a binary symmetric channel and a code C =
{0000, 0011, 1100, 1111}; assume that the four codewords are used with
probabilities {1/2, 1/8, 1/8, 1/4}.

What is the decoding rule that minimizes the probability of decoding
error? [The optimal decoding rule depends on the noise level f of the
binary symmetric channel. Give the decoding rule for each range of
values of f , for f between 0 and 1/2.]

Exercise 15.11.[2 ] Find the capacity and optimal input distribution for the
three-input, three-output channel whose transition probabilities are:

Q =





1 0 0
0 2/3 1/3

0 1/3 2/3



 . (15.2)
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Exercise 15.12.[3, p.239] The input to a channel Q is a word of 8 bits. The
output is also a word of 8 bits. Each time it is used, the channel flips
exactly one of the transmitted bits, but the receiver does not know which
one. The other seven bits are received without error. All 8 bits are
equally likely to be the one that is flipped. Derive the capacity of this
channel.

Show, by describing an explicit encoder and decoder that it is possible
reliably (that is, with zero error probability) to communicate 5 bits per
cycle over this channel.

. Exercise 15.13.[2 ] A channel with input x ∈ {a, b, c} and output y ∈ {r, s, t, u}
has conditional probability matrix:

Q =









1/2 0 0
1/2 1/2 0
0 1/2 1/2

0 0 1/2









.
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What is its capacity?

. Exercise 15.14.[3 ] The ten-digit number on the cover of a book known as the
ISBN incorporates an error-detecting code. The number consists of nine

0-521-64298-1
1-010-00000-4

Table 15.1. Some valid ISBNs.
[The hyphens are included for
legibility.]

source digits x1, x2, . . . , x9, satisfying xn ∈ {0, 1, . . . , 9}, and a tenth
check digit whose value is given by

x10 =

(

9
∑

n=1

nxn

)

mod11.

Here x10 ∈ {0, 1, . . . , 9, 10}. If x10 = 10 then the tenth digit is shown
using the roman numeral X.

Show that a valid ISBN satisfies:
(

10
∑

n=1

nxn

)

mod11 = 0.

Imagine that an ISBN is communicated over an unreliable human chan-
nel which sometimes modifies digits and sometimes reorders digits.

Show that this code can be used to detect (but not correct) all errors in
which any one of the ten digits is modified (for example, 1-010-00000-4
→ 1-010-00080-4).

Show that this code can be used to detect all errors in which any two ad-
jacent digits are transposed (for example, 1-010-00000-4 → 1-100-00000-
4).

What other transpositions of pairs of non-adjacent digits can be de-
tected?

If the tenth digit were defined to be

x10 =

(

9
∑

n=1

nxn

)

mod10,

why would the code not work so well? (Discuss the detection of both
modifications of single digits and transpositions of digits.)
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Exercise 15.15.[3 ] A channel with input x and output y has transition proba-
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bility matrix:

Q =









1 − f f 0 0
f 1 − f 0 0
0 0 1 − g g
0 0 g 1 − g









.

Assuming an input distribution of the form

PX =

{

p

2
,
p

2
,
1 − p

2
,
1 − p

2

}

,

write down the entropy of the output, H(Y ), and the conditional entropy
of the output given the input, H(Y |X).

Show that the optimal input distribution is given by

p =
1

1 + 2−H2(g)+H2(f)
,

where H2(f) = f log2
1
f

+ (1 − f) log2
1

(1−f) . Remember d
dp

H2(p) = log2
1−p

p
.

Write down the optimal input distribution and the capacity of the chan-
nel in the case f = 1/2, g = 0, and comment on your answer.

. Exercise 15.16.[2 ] What are the differences in the redundancies needed in an
error-detecting code (which can reliably detect that a block of data has
been corrupted) and an error-correcting code (which can detect and cor-
rect errors)?

Further tales from information theory

The following exercises give you the chance to discover for yourself the answers
to some more surprising results of information theory.

Exercise 15.17.[3 ] Communication of information from correlated sources. Imag-
ine that we want to communicate data from two data sources X (A) and X(B)

to a central location C via noise-free one-way communication channels (fig-
ure 15.2a). The signals x(A) and x(B) are strongly dependent, so their joint
information content is only a little greater than the marginal information con-
tent of either of them. For example, C is a weather collator who wishes to
receive a string of reports saying whether it is raining in Allerton (x(A)) and
whether it is raining in Bognor (x(B)). The joint probability of x(A) and x(B)

might be
P (x(A), x(B)): x(A)

0 1

x(B) 0 0.49 0.01

1 0.01 0.49 (15.3)

The weather collator would like to know N successive values of x(A) and x(B)

exactly, but, since he has to pay for every bit of information he receives, he
is interested in the possibility of avoiding buying N bits from source A and

N bits from source B. Assuming that variables x(A) and x(B) are generated
repeatedly from this distribution, can they be encoded at rates RA and RB in
such a way that C can reconstruct all the variables, with the sum of information
transmission rates on the two lines being less than two bits per cycle?
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Achievable

H(X(B) |X(A))

H(X(B))

H(X(A), X(B))

RB

RAH(X(A) |X(B)) H(X(A))

Figure 15.2. Communication of
information from dependent
sources. (a) x(A) and x(B) are
dependent sources (the
dependence is represented by the
dotted arrow). Strings of values of
each variable are encoded using
codes of rate RA and RB into
transmissions t(A) and t(B), which
are communicated over noise-free
channels to a receiver C. (b) The
achievable rate region. Both
strings can be conveyed without
error even though RA < H(X(A))
and RB < H(X(B)).

The answer, which you should demonstrate, is indicated in figure 15.2.
In the general case of two dependent sources X (A) and X(B), there exist
codes for the two transmitters that can achieve reliable communication of
both X(A) and X(B) to C, as long as: the information rate from X (A),
RA, exceeds H(X(A) |X(B)); the information rate from X (B), RB , exceeds
H(X(B) |X(A)); and the total information rate RA + RB exceeds the joint
entropy H(X(A), X(B)) (Slepian and Wolf, 1973).

So in the case of x(A) and x(B) above, each transmitter must transmit at
a rate greater than H2(0.02) = 0.14 bits, and the total rate RA + RB must
be greater than 1.14 bits, for example RA = 0.6, RB = 0.6. There exist codes
that can achieve these rates. Your task is to figure out why this is so.

Try to find an explicit solution in which one of the sources is sent as plain
text, t(B) = x(B), and the other is encoded.

Exercise 15.18.[3 ] Multiple access channels. Consider a channel with two sets
of inputs and one output – for example, a shared telephone line (figure 15.3a).
A simple model system has two binary inputs x(A) and x(B) and a ternary
output y equal to the arithmetic sum of the two inputs, that’s 0, 1 or 2. There
is no noise. Users A and B cannot communicate with each other, and they
cannot hear the output of the channel. If the output is a 0, the receiver can
be certain that both inputs were set to 0; and if the output is a 2, the receiver
can be certain that both inputs were set to 1. But if the output is 1, then
it could be that the input state was (0, 1) or (1, 0). How should users A and
B use this channel so that their messages can be deduced from the received
signals? How fast can A and B communicate?

Clearly the total information rate from A and B to the receiver cannot
be two bits. On the other hand it is easy to achieve a total information rate
RA+RB of one bit. Can reliable communication be achieved at rates (RA, RB)
such that RA + RB > 1?

The answer is indicated in figure 15.3.

Some practical codes for multi-user channels are presented in Ratzer and
MacKay (2003).

Exercise 15.19.[3 ] Broadcast channels. A broadcast channel consists of a single
transmitter and two or more receivers. The properties of the channel are de-
fined by a conditional distribution Q(y(A), y(B) |x). (We’ll assume the channel
is memoryless.) The task is to add an encoder and two decoders to enable

x
y(A)

y(B)
HHj
��*

Figure 15.4. The broadcast
channel. x is the channel input;
y(A) and y(B) are the outputs.

reliable communication of a common message at rate R0 to both receivers, an
individual message at rate RA to receiver A, and an individual message at rate
RB to receiver B. The capacity region of the broadcast channel is the convex
hull of the set of achievable rate triplets (R0, RA, RB).

A simple benchmark for such a channel is given by time-sharing (time-
division signaling). If the capacities of the two channels, considered separately,
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Figure 15.3. Multiple access
channels. (a) A general multiple
access channel with two
transmitters and one receiver. (b)
A binary multiple access channel
with output equal to the sum of
two inputs. (c) The achievable
region.

are C(A) and C(B), then by devoting a fraction φA of the transmission time
to channel A and φB =1−φA to channel B, we can achieve (R0, RA, RB) =
(0, φAC(A), φBC(B)).

-

6
@

@
@

@@

C(B)

RB

RAC(A)

Figure 15.5. Rates achievable by
simple timesharing.

We can do better than this, however. As an analogy, imagine speaking
simultaneously to an American and a Belarusian; you are fluent in American
and in Belarusian, but neither of your two receivers understands the other’s
language. If each receiver can distinguish whether a word is in their own
language or not, then an extra binary file can be conveyed to both recipients by
using its bits to decide whether the next transmitted word should be from the
American source text or from the Belarusian source text. Each recipient can
concatenate the words that they understand in order to receive their personal
message, and can also recover the binary string.

An example of a broadcast channel consists of two binary symmetric chan-
nels with a common input. The two halves of the channel have flip prob-
abilities fA and fB. We’ll assume that A has the better half-channel, i.e.,
fA < fB < 1/2. [A closely related channel is a ‘degraded’ broadcast channel,
in which the conditional probabilities are such that the random variables have
the structure of a Markov chain,

x → y(A) → y(B), (15.4)

i.e., y(B) is a further degraded version of y(A).] In this special case, it turns
out that whatever information is getting through to receiver B can also be
recovered by receiver A. So there is no point distinguishing between R0 and
RB : the task is to find the capacity region for the rate pair (R0, RA), where
R0 is the rate of information reaching both A and B, and RA is the rate of
the extra information reaching A.

The following exercise is equivalent to this one, and a solution to it is
illustrated in figure 15.8.

Exercise 15.20.[3 ] Variable-rate error-correcting codes for channels with unknown
noise level. In real life, channels may sometimes not be well characterized

f
A

f
B

A

BC

C
R

f

Figure 15.6. Rate of reliable
communication R, as a function of
noise level f , for Shannonesque
codes designed to operate at noise
levels fA (solid line) and fB

(dashed line).

before the encoder is installed. As a model of this situation, imagine that a
channel is known to be a binary symmetric channel with noise level either fA

or fB. Let fB > fA, and let the two capacities be CA and CB .

Those who like to live dangerously might install a system designed for noise
level fA with rate RA ' CA; in the event that the noise level turns out to be
fB, our experience of Shannon’s theories would lead us to expect that there
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would be a catastrophic failure to communicate information reliably (solid line
in figure 15.6).

f
A

f
B

A

BC

C
R

f

Figure 15.7. Rate of reliable
communication R, as a function of
noise level f , for a desired
variable-rate code.

A conservative approach would design the encoding system for the worst-
case scenario, installing a code with rate RB ' CB (dashed line in figure 15.6).
In the event that the lower noise level, fA, holds true, the managers would
have a feeling of regret because of the wasted capacity difference CA − RB.

Is it possible to create a system that not only transmits reliably at some
rate R0 whatever the noise level, but also communicates some extra, ‘lower-
priority’ bits if the noise level is low, as shown in figure 15.7? This code
communicates the high-priority bits reliably at all noise levels between fA and
fB, and communicates the low-priority bits also if the noise level is fA or
below.

This problem is mathematically equivalent to the previous problem, the
degraded broadcast channel. The lower rate of communication was there called
R0, and the rate at which the low-priority bits are communicated if the noise
level is low was called RA.

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1

Figure 15.8. An achievable region
for the channel with unknown
noise level. Assuming the two
possible noise levels are fA = 0.01
and fB = 0.1, the dashed lines
show the rates RA, RB that are
achievable using a simple
time-sharing approach, and the
solid line shows rates achievable
using a more cunning approach.

An illustrative answer is shown in figure 15.8, for the case fA = 0.01 and
fB = 0.1. (This figure also shows the achievable region for a broadcast channel
whose two half-channels have noise levels fA = 0.01 and fB = 0.1.) I admit I
find the gap between the simple time-sharing solution and the cunning solution
disappointingly small.

In Chapter 50 we will discuss codes for a special class of broadcast channels,
namely erasure channels, where every symbol is either received without error
or erased. These codes have the nice property that they are rateless – the
number of symbols transmitted is determined on the fly such that reliable
comunication is achieved, whatever the erasure statistics of the channel.

Exercise 15.21.[3 ] Multiterminal information networks are both important practi-
cally and intriguing theoretically. Consider the following example of a two-way
binary channel (figure 15.9a,b): two people both wish to talk over the channel,
and they both want to hear what the other person is saying; but you can hear
the signal transmitted by the other person only if you are transmitting a zero.
What simultaneous information rates from A to B and from B to A can be
achieved, and how? Everyday examples of such networks include the VHF
channels used by ships, and computer ethernet networks (in which all the
devices are unable to hear anything if two or more devices are broadcasting
simultaneously).

Obviously, we can achieve rates of 1/2 in both directions by simple time-
sharing. But can the two information rates be made larger? Finding the
capacity of a general two-way channel is still an open problem. However,
we can obtain interesting results concerning achievable points for the simple
binary channel discussed above, as indicated in figure 15.9c. There exist codes
that can achieve rates up to the boundary shown. There may exist better
codes too.

Solutions

Solution to exercise 15.12 (p.235). C(Q) = 5 bits.
Hint for the last part: a solution exists that involves a simple (8, 5) code.


