
Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

240 15 — Further Exercises on Information Theory

(a)

x(A)

y(A)

-

�

P (y(A), y(B)|x(A), x(B))
y(B)

x(B)

-

�

(b)

y(A): x(A)

0 1

x(B) 0 0 0

1 1 0

y(B): x(A)

0 1

x(B) 0 0 1

1 0 0

(c)
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R(
B)

R(A)

Achievable

Figure 15.9. (a) A general
two-way channel. (b) The rules
for a binary two-way channel.
The two tables show the outputs
y(A) and y(B) that result for each
state of the inputs. (c) Achievable
region for the two-way binary
channel. Rates below the solid
line are achievable. The dotted
line shows the ‘obviously
achievable’ region which can be
attained by simple time-sharing.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

16

Message Passing

One of the themes of this book is the idea of doing complicated calculations
using simple distributed hardware. It turns out that quite a few interesting
problems can be solved by message-passing algorithms, in which simple mes-
sages are passed locally among simple processors whose operations lead, after
some time, to the solution of a global problem.

�
16.1 Counting

As an example, consider a line of soldiers walking in the mist. The commander
wishes to perform the complex calculation of counting the number of soldiers
in the line. This problem could be solved in two ways.

First there is a solution that uses expensive hardware: the loud booming
voices of the commander and his men. The commander could shout ‘all soldiers
report back to me within one minute!’, then he could listen carefully as the
men respond ‘Molesworth here sir!’, ‘Fotherington–Thomas here sir!’, and so
on. This solution relies on several expensive pieces of hardware: there must be
a reliable communication channel to and from every soldier; the commander
must be able to listen to all the incoming messages – even when there are
hundreds of soldiers – and must be able to count; and all the soldiers must be
well-fed if they are to be able to shout back across the possibly-large distance
separating them from the commander.

The second way of finding this global function, the number of soldiers,
does not require global communication hardware, high IQ, or good food; we
simply require that each soldier can communicate single integers with the two
adjacent soldiers in the line, and that the soldiers are capable of adding one
to a number. Each soldier follows these rules:

1. If you are the front soldier in the line, say the number ‘one’ to the
soldier behind you.

2. If you are the rearmost soldier in the line, say the number ‘one’ to
the soldier in front of you.

3. If a soldier ahead of or behind you says a number to you, add one
to it, and say the new number to the soldier on the other side.

Algorithm 16.1. Message-passing
rule-set A.

If the clever commander can not only add one to a number, but also add
two numbers together, then he can find the global number of soldiers by simply
adding together:

241

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

242 16 — Message Passing

the number said to him by the
soldier in front of him,

(which equals the total number of
soldiers in front)

+ the number said to the com-
mander by the soldier behind
him,

(which is the number behind)

+ one (to count the commander himself).

This solution requires only local communication hardware and simple compu-
tations (storage and addition of integers).

Commander
4

1

3

2

2

3

1

4 Figure 16.2. A line of soldiers
counting themselves using
message-passing rule-set A. The
commander can add ‘3’ from the
soldier in front, ‘1’ from the
soldier behind, and ‘1’ for himself,
and deduce that there are 5
soldiers in total.

Separation

This clever trick makes use of a profound property of the total number of
soldiers: that it can be written as the sum of the number of soldiers in front

of a point and the number behind that point, two quantities which can be
computed separately, because the two groups are separated by the commander.

If the soldiers were not arranged in a line but were travelling in a swarm,
then it would not be easy to separate them into two groups in this way. The

Commander

Jim

Figure 16.3. A swarm of guerillas.

guerillas in figure 16.3 could not be counted using the above message-passing
rule-set A, because, while the guerillas do have neighbours (shown by lines),
it is not clear who is ‘in front’ and who is ‘behind’; furthermore, since the
graph of connections between the guerillas contains cycles, it is not possible
for a guerilla in a cycle (such as ‘Jim’) to separate the group into two groups,
‘those in front’, and ‘those behind’.

A swarm of guerillas can be counted by a modified message-passing algo-
rithm if they are arranged in a graph that contains no cycles.

Rule-set B is a message-passing algorithm for counting a swarm of guerillas
whose connections form a cycle-free graph, also known as a tree, as illustrated
in figure 16.4. Any guerilla can deduce the total in the tree from the messages
that they receive.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

16.1: Counting 243

Commander

Jim

Figure 16.4. A swarm of guerillas
whose connections form a tree.

1. Count your number of neighbours, N .

2. Keep count of the number of messages you have received from your
neighbours, m, and of the values v1, v2, . . . , vN of each of those
messages. Let V be the running total of the messages you have
received.

3. If the number of messages you have received, m, is equal to N − 1,
then identify the neighbour who has not sent you a message and tell
them the number V + 1.

4. If the number of messages you have received is equal to N , then:

(a) the number V + 1 is the required total.

(b) for each neighbour n {
say to neighbour n the number V + 1 − vn.

}

Algorithm 16.5. Message-passing
rule-set B.

B

A Figure 16.6. A triangular 41 × 41
grid. How many paths are there
from A to B? One path is shown.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

244 16 — Message Passing

�
16.2 Path-counting

A more profound task than counting squaddies is the task of counting the
number of paths through a grid, and finding how many paths pass through
any given point in the grid.

Figure 16.6 shows a rectangular grid, and a path through the grid, con-
necting points A and B. A valid path is one that starts from A and proceeds
to B by rightward and downward moves. Our questions are:

1. How many such paths are there from A to B?

2. If a random path from A to B is selected, what is the probability that it
passes through a particular node in the grid? [When we say ‘random’, we
mean that all paths have exactly the same probability of being selected.]

3. How can a random path from A to B be selected?

Counting all the paths from A to B doesn’t seem straightforward. The number
of paths is expected to be pretty big – even if the permitted grid were a diagonal
strip only three nodes wide, there would still be about 2N/2 possible paths.

P

A

B

M

N

Figure 16.7. Every path from A to
P enters P through an upstream
neighbour of P, either M or N; so
we can find the number of paths
from A to P by adding the
number of paths from A to M to
the number from A to N.

The computational breakthrough is to realize that to find the number of
paths, we do not have to enumerate all the paths explicitly. Pick a point P in
the grid and consider the number of paths from A to P. Every path from A
to P must come in to P through one of its upstream neighbours (‘upstream’
meaning above or to the left). So the number of paths from A to P can be
found by adding up the number of paths from A to each of those neighbours.

This message-passing algorithm is illustrated in figure 16.8 for a simple
grid with ten vertices connected by twelve directed edges. We start by send-

1
A

1

1

B

11

5

5

3

2

2

Figure 16.8. Messages sent in the
forward pass.

ing the ‘1’ message from A. When any node has received messages from all its
upstream neighbours, it sends the sum of them on to its downstream neigh-
bours. At B, the number 5 emerges: we have counted the number of paths
from A to B without enumerating them all. As a sanity-check, figure 16.9

B

A

Figure 16.9. The five paths.

shows the five distinct paths from A to B.

Having counted all paths, we can now move on to more challenging prob-
lems: computing the probability that a random path goes through a given
vertex, and creating a random path.

Probability of passing through a node

By making a backward pass as well as the forward pass, we can deduce how
many of the paths go through each node; and if we divide that by the total
number of paths, we obtain the probability that a randomly selected path
passes through that node. Figure 16.10 shows the backward-passing messages

A

B

1
5

1 1 1
1

3

5

5

2
2

2
1 1

1
2

5 3

1

1

Figure 16.10. Messages sent in the
forward and backward passes.

in the lower-right corners of the tables, and the original forward-passing mes-
sages in the upper-left corners. By multiplying these two numbers at a given
vertex, we find the total number of paths passing through that vertex. For
example, four paths pass through the central vertex.

Figure 16.11 shows the result of this computation for the triangular 41 ×
41 grid. The area of each blob is proportional to the probability of passing
through the corresponding node.

Random path sampling

Exercise 16.1.[1, p.247] If one creates a ‘random’ path from A to B by flipping
a fair coin at every junction where there is a choice of two directions, is

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

16.3: Finding the lowest-cost path 245

the resulting path a uniform random sample from the set of all paths?
[Hint: imagine trying it for the grid of figure 16.8.]

There is a neat insight to be had here, and I’d like you to have the satisfaction
of figuring it out.

Exercise 16.2.[2, p.247] Having run the forward and backward algorithms be-
tween points A and B on a grid, how can one draw one path from A to
B uniformly at random? (Figure 16.11.)

(a) (b) B

A Figure 16.11. (a) The probability
of passing through each node, and
(b) a randomly chosen path.

The message-passing algorithm we used to count the paths to B is an
example of the sum–product algorithm. The ‘sum’ takes place at each node
when it adds together the messages coming from its predecessors; the ‘product’
was not mentioned, but you can think of the sum as a weighted sum in which
all the summed terms happened to have weight 1.

�
16.3 Finding the lowest-cost path

Imagine you wish to travel as quickly as possible from Ambridge (A) to Bognor
(B). The various possible routes are shown in figure 16.12, along with the cost
in hours of traversing each edge in the graph. For example, the route A–I–L–

A

H

I

J

K

L

M

N

B

4

1

2

1

2

1

2

1

2

3

1

3

�
��*

H
HHj

�
��*

H
HHj

�
��*

H
HHj

�
��*

H
HHj

�
��*

H
HHj

�
��*

H
HHj

Figure 16.12. Route diagram from
Ambridge to Bognor, showing the
costs associated with the edges.

N–B has a cost of 8 hours. We would like to find the lowest-cost path without
explicitly evaluating the cost of all paths. We can do this efficiently by finding
for each node what the cost of the lowest-cost path to that node from A is.
These quantities can be computed by message-passing, starting from node A.
The message-passing algorithm is called the min–sum algorithm or Viterbi

algorithm.

For brevity, we’ll call the cost of the lowest-cost path from node A to
node x ‘the cost of x’. Each node can broadcast its cost to its descendants
once it knows the costs of all its possible predecessors. Let’s step through the
algorithm by hand. The cost of A is zero. We pass this news on to H and I.
As the message passes along each edge in the graph, the cost of that edge is
added. We find the costs of H and I are 4 and 1 respectively (figure 16.13a).
Similarly then, the costs of J and L are found to be 6 and 2 respectively, but
what about K? Out of the edge H–K comes the message that a path of cost 5
exists from A to K via H; and from edge I–K we learn of an alternative path
of cost 3 (figure 16.13b). The min–sum algorithm sets the cost of K equal
to the minimum of these (the ‘min’), and records which was the smallest-cost
route into K by retaining only the edge I–K and pruning away the other edges
leading to K (figure 16.13c). Figures 16.13d and e show the remaining two
iterations of the algorithm which reveal that there is a path from A to B with
cost 6. [If the min–sum algorithm encounters a tie, where the minimum-cost

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

246 16 — Message Passing

path to a node is achieved by more than one route to it, then the algorithm
can pick any of those routes at random.]

We can recover this lowest-cost path by backtracking from B, following
the trail of surviving edges back to A. We deduce that the lowest-cost path is
A–I–K–M–B.

(a)

0
A

4
H

1
I

J

K

L

M

N

B

4

1

2

1

2

1

2

1

2

3

1

3

�
��*

H
HHj

�
��*

H
HHj

�
��*

H
HHj

�
��*

H
HHj

�
��*

H
HHj

�
��*

H
HHj

(b)

0
A

4
H

1
I

6
J

K
5

3

2
L

M

N

B

4

1

2

1

2

1

2

1

2

3

1

3

�
��*

H
HHj

�
��*

H
Hj

�
�*

H
HHj

�
��*

H
HHj

�
��*

H
HHj

�
��*

H
HHj

(c)

0
A

4
H

1
I

6
J

3
K

2
L

M

N

B

4

1

2

1

2

1

2

1

2

3

1

3

�
��*

H
HHj

�
��*

�
��*

H
HHj

�
��*

H
HHj

�
��*

H
HHj

�
��*

H
HHj

(d)

0
A

4
H

1
I

6
J

3
K

2
L

5
M

4
N

B

4

1

2

1

2

1

2

1

2

3

1

3

�
��*

H
HHj

�
��*

�
��*

H
HHj

�
��*

H
HHj

�
��*

H
HHj

(e)

0
A

4
H

1
I

6
J

3
K

2
L

5
M

4
N

6
B

4

1

2

1

2

1

2

1

2

3

1

3

�
��*

H
HHj

�
��*

�
��*

H
HHj

�
��*

H
HHj

H
HHj

Figure 16.13. Min–sum
message-passing algorithm to find
the cost of getting to each node,
and thence the lowest cost route
from A to B.

Other applications of the min–sum algorithm

Imagine that you manage the production of a product from raw materials
via a large set of operations. You wish to identify the critical path in your
process, that is, the subset of operations that are holding up production. If
any operations on the critical path were carried out a little faster then the
time to get from raw materials to product would be reduced.

The critical path of a set of operations can be found using the min–sum
algorithm.

In Chapter 25 the min–sum algorithm will be used in the decoding of
error-correcting codes.

�
16.4 Summary and related ideas

Some global functions have a separability property. For example, the number
of paths from A to P separates into the sum of the number of paths from A to M
(the point to P’s left) and the number of paths from A to N (the point above
P). Such functions can be computed efficiently by message-passing. Other
functions do not have such separability properties, for example

1. the number of pairs of soldiers in a troop who share the same birthday;

2. the size of the largest group of soldiers who share a common height
(rounded to the nearest centimetre);

3. the length of the shortest tour that a travelling salesman could take that
visits every soldier in a troop.

One of the challenges of machine learning is to find low-cost solutions to prob-
lems like these. The problem of finding a large subset of variables that are
approximately equal can be solved with a neural network approach (Hopfield
and Brody, 2000; Hopfield and Brody, 2001). A neural approach to the trav-
elling salesman problem will be discussed in section 42.9.

�
16.5 Further exercises

. Exercise 16.3.[2] Describe the asymptotic properties of the probabilities de-
picted in figure 16.11a, for a grid in a triangle of width and height N .

. Exercise 16.4.[2] In image processing, the integral image I(x, y) obtained from
an image f(x, y) (where x and y are pixel coordinates) is defined by

I(x, y) ≡

x∑

u=0

y∑

v=0

f(u, v). (16.1)

Show that the integral image I(x, y) can be efficiently computed by mes-
sage passing.

Show that, from the integral image, some simple functions of the image
can be obtained. For example, give an expression for the sum of the (0, 0)

y2

y1

x1 x2

image intensities f(x, y) for all (x, y) in a rectangular region extending
from (x1, y1) to (x2, y2).

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

16.6: Solutions 247

�
16.6 Solutions

Solution to exercise 16.1 (p.244). Since there are five paths through the grid
of figure 16.8, they must all have probability 1/5. But a strategy based on fair
coin-flips will produce paths whose probabilities are powers of 1/2.

Solution to exercise 16.2 (p.245). To make a uniform random walk, each for-
ward step of the walk should be chosen using a different biased coin at each
junction, with the biases chosen in proportion to the backward messages ema-
nating from the two options. For example, at the first choice after leaving A,
there is a ‘3’ message coming from the East, and a ‘2’ coming from South, so
one should go East with probability 3/5 and South with probability 2/5. This
is how the path in figure 16.11b was generated.

