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17

Communication over Constrained

Noiseless Channels

In this chapter we study the task of communicating efficiently over a con-
strained noiseless channel – a constrained channel over which not all strings
from the input alphabet may be transmitted.

We make use of the idea introduced in Chapter 16, that global properties

of graphs can be computed by a local message-passing algorithm.

�
17.1 Three examples of constrained binary channels

A constrained channel can be defined by rules that define which strings are
permitted.

Example 17.1. In Channel A every 1 must be followed by at least one 0.
Channel A:

the substring 11 is forbidden.A valid string for this channel is

00100101001010100010. (17.1)

As a motivation for this model, consider a channel in which 1s are repre-
sented by pulses of electromagnetic energy, and the device that produces
those pulses requires a recovery time of one clock cycle after generating
a pulse before it can generate another.

Example 17.2. Channel B has the rule that all 1s must come in groups of two
or more, and all 0s must come in groups of two or more.

Channel B:
101 and 010 are forbidden.A valid string for this channel is

00111001110011000011. (17.2)

As a motivation for this model, consider a disk drive in which succes-
sive bits are written onto neighbouring points in a track along the disk
surface; the values 0 and 1 are represented by two opposite magnetic
orientations. The strings 101 and 010 are forbidden because a single
isolated magnetic domain surrounded by domains having the opposite
orientation is unstable, so that 101 might turn into 111, for example.

Example 17.3. Channel C has the rule that the largest permitted runlength is
two, that is, each symbol can be repeated at most once.

Channel C:
111 and 000 are forbidden.A valid string for this channel is

10010011011001101001. (17.3)
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A physical motivation for this model is a disk drive in which the rate of
rotation of the disk is not known accurately, so it is difficult to distinguish
between a string of two 1s and a string of three 1s, which are represented
by oriented magnetizations of duration 2τ and 3τ respectively, where
τ is the (poorly known) time taken for one bit to pass by; to avoid
the possibility of confusion, and the resulting loss of synchronization of
sender and receiver, we forbid the string of three 1s and the string of
three 0s.

All three of these channels are examples of runlength-limited channels.
The rules constrain the minimum and maximum numbers of successive 1s and
0s.

Channel Runlength of 1s Runlength of 0s
minimum maximum minimum maximum

unconstrained 1 ∞ 1 ∞
A 1 1 1 ∞
B 2 ∞ 2 ∞
C 1 2 1 2

In channel A, runs of 0s may be of any length but runs of 1s are restricted to
length one. In channel B all runs must be of length two or more. In channel
C, all runs must be of length one or two.

The capacity of the unconstrained binary channel is one bit per channel
use. What are the capacities of the three constrained channels? [To be fair,
we haven’t defined the ‘capacity’ of such channels yet; please understand ‘ca-
pacity’ as meaning how many bits can be conveyed reliably per channel-use.]

Some codes for a constrained channel

Let us concentrate for a moment on channel A, in which runs of 0s may be
of any length but runs of 1s are restricted to length one. We would like to
communicate a random binary file over this channel as efficiently as possible.

Code C1

s t

0 00

1 10

A simple starting point is a (2, 1) code that maps each source bit into two
transmitted bits, C1. This is a rate-1/2 code, and it respects the constraints of
channel A, so the capacity of channel A is at least 0.5. Can we do better?

C1 is redundant because if the first of two received bits is a zero, we know
that the second bit will also be a zero. We can achieve a smaller average
transmitted length using a code that omits the redundant zeroes in C1.

Code C2

s t

0 0

1 10

C2 is such a variable-length code. If the source symbols are used with
equal frequency then the average transmitted length per source bit is

L =
1

2
1 +

1

2
2 =

3

2
, (17.4)

so the average communication rate is

R = 2/3, (17.5)

and the capacity of channel A must be at least 2/3.
Can we do better than C2? There are two ways to argue that the infor-

mation rate could be increased above R = 2/3.
The first argument assumes we are comfortable with the entropy as a

measure of information content. The idea is that, starting from code C2, we
can reduce the average message length, without greatly reducing the entropy
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of the message we send, by decreasing the fraction of 1s that we transmit.
Imagine feeding into C2 a stream of bits in which the frequency of 1s is f . [Such
a stream could be obtained from an arbitrary binary file by passing the source
file into the decoder of an arithmetic code that is optimal for compressing
binary strings of density f .] The information rate R achieved is the entropy
of the source, H2(f), divided by the mean transmitted length,

L(f) = (1 − f) + 2f = 1 + f. (17.6)

Thus

R(f) =
H2(f)

L(f)
=

H2(f)

1 + f
. (17.7)

The original code C2, without preprocessor, corresponds to f = 1/2. What
happens if we perturb f a little towards smaller f , setting

f =
1

2
+ δ, (17.8)

for small negative δ? In the vicinity of f = 1/2, the denominator L(f) varies
linearly with δ. In contrast, the numerator H2(f) only has a second-order
dependence on δ.

. Exercise 17.4.[1 ] Find, to order δ2, the Taylor expansion of H2(f) as a function
of δ.

To first order, R(f) increases linearly with decreasing δ. It must be possible
to increase R by decreasing f . Figure 17.1 shows these functions; R(f) does
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Figure 17.1. Top: The information
content per source symbol and
mean transmitted length per
source symbol as a function of the
source density. Bottom: The
information content per
transmitted symbol, in bits, as a
function of f .

indeed increase as f decreases and has a maximum of about 0.69 bits per
channel use at f ' 0.38.

By this argument we have shown that the capacity of channel A is at least
maxf R(f) = 0.69.

. Exercise 17.5.[2, p.257] If a file containing a fraction f = 0.5 1s is transmitted
by C2, what fraction of the transmitted stream is 1s?

What fraction of the transmitted bits is 1s if we drive code C2 with a
sparse source of density f = 0.38?

A second, more fundamental approach counts how many valid sequences
of length N there are, SN . We can communicate log SN bits in N channel
cycles by giving one name to each of these valid sequences.

�
17.2 The capacity of a constrained noiseless channel

We defined the capacity of a noisy channel in terms of the mutual information
between its input and its output, then we proved that this number, the capac-
ity, was related to the number of distinguishable messages S(N) that could be
reliably conveyed over the channel in N uses of the channel by

C = lim
N→∞

1

N
log S(N). (17.9)

In the case of the constrained noiseless channel, we can adopt this identity as
our definition of the channel’s capacity. However, the name s, which, when
we were making codes for noisy channels (section 9.6), ran over messages
s = 1, . . . , S, is about to take on a new role: labelling the states of our channel;
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Figure 17.2. (a) State diagram for
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Trellis. (d) Connection matrix.
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Figure 17.3. State diagrams, trellis
sections and connection matrices
for channels B and C.

so in this chapter we will denote the number of distinguishable messages of
length N by MN , and define the capacity to be:

C = lim
N→∞

1

N
log MN . (17.10)

Once we have figured out the capacity of a channel we will return to the
task of making a practical code for that channel.

�
17.3 Counting the number of possible messages

First let us introduce some representations of constrained channels. In a state

diagram, states of the transmitter are represented by circles labelled with the
name of the state. Directed edges from one state to another indicate that
the transmitter is permitted to move from the first state to the second, and a
label on that edge indicates the symbol emitted when that transition is made.
Figure 17.2a shows the state diagram for channel A. It has two states, 0 and
1. When transitions to state 0 are made, a 0 is transmitted; when transitions
to state 1 are made, a 1 is transmitted; transitions from state 1 to state 1 are
not possible.

We can also represent the state diagram by a trellis section, which shows
two successive states in time at two successive horizontal locations (fig-
ure 17.2b). The state of the transmitter at time n is called sn. The set of
possible state sequences can be represented by a trellis as shown in figure 17.2c.
A valid sequence corresponds to a path through the trellis, and the number of
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Figure 17.4. Counting the number
of paths in the trellis of channel
A. The counts next to the nodes
are accumulated by passing from
left to right across the trellises.

Figure 17.5. Counting the number of paths in the trellises of channels A, B, and C. We assume that at
the start the first bit is preceded by 00, so that for channels A and B, any initial character
is permitted, but for channel C, the first character must be a 1.
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n Mn Mn/Mn−1 log2 Mn
1
n

log2 Mn

1 2 1.0 1.00
2 3 1.500 1.6 0.79
3 5 1.667 2.3 0.77
4 8 1.600 3.0 0.75
5 13 1.625 3.7 0.74
6 21 1.615 4.4 0.73
7 34 1.619 5.1 0.73
8 55 1.618 5.8 0.72
9 89 1.618 6.5 0.72

10 144 1.618 7.2 0.72
11 233 1.618 7.9 0.71
12 377 1.618 8.6 0.71

100 9×1020 1.618 69.7 0.70
200 7×1041 1.618 139.1 0.70
300 6×1062 1.618 208.5 0.70
400 5×1083 1.618 277.9 0.69

Figure 17.6. Counting the number
of paths in the trellis of channel A.

valid sequences is the number of paths. For the purpose of counting how many
paths there are through the trellis, we can ignore the labels on the edges and
summarize the trellis section by the connection matrix A, in which Ass′ = 1
if there is an edge from state s to s′, and Ass′ = 0 otherwise (figure 17.2d).
Figure 17.3 shows the state diagrams, trellis sections and connection matrices
for channels B and C.

Let’s count the number of paths for channel A by message-passing in its
trellis. Figure 17.4 shows the first few steps of this counting process, and
figure 17.5a shows the number of paths ending in each state after n steps for
n = 1, . . . , 8. The total number of paths of length n, Mn, is shown along the
top. We recognize Mn as the Fibonacci series.

. Exercise 17.6.[1 ] Show that the ratio of successive terms in the Fibonacci series
tends to the golden ratio,

γ ≡ 1 +
√

5

2
= 1.618. (17.11)

Thus, to within a constant factor, MN scales as MN ∼ γN as N → ∞, so the
capacity of channel A is

C = lim
1

N
log2

[

constant · γN
]

= log2 γ = log2 1.618 = 0.694. (17.12)

How can we describe what we just did? The count of the number of paths
is a vector c(n); we can obtain c(n+1) from c(n) using:

c(n+1) = Ac(n). (17.13)

So
c(N) = ANc(0), (17.14)

where c(0) is the state count before any symbols are transmitted. In figure 17.5
we assumed c(0) = [0, 1]T, i.e., that either of the two symbols is permitted at

the outset. The total number of paths is Mn =
∑

s c
(n)
s = c(n) ·n. In the limit,

c(N) becomes dominated by the principal right-eigenvector of A.

c(N) → constant · λN
1 e

(0)
R

. (17.15)
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Here, λ1 is the principal eigenvalue of A.

So to find the capacity of any constrained channel, all we need to do is find
the principal eigenvalue, λ1, of its connection matrix. Then

C = log2 λ1. (17.16)

�
17.4 Back to our model channels

Comparing figure 17.5a and figures 17.5b and c it looks as if channels B and
C have the same capacity as channel A. The principal eigenvalues of the three
trellises are the same (the eigenvectors for channels A and B are given at the
bottom of table C.4, p.608). And indeed the channels are intimately related.

z0

- t

〈d

� s

z1

⊕
6

-

z0〈d � tz1

⊕
? - s-

Figure 17.7. An accumulator and
a differentiator.

Equivalence of channels A and B

If we take any valid string s for channel A and pass it through an accumulator,
obtaining t defined by:

t1 = s1

tn = tn−1 + sn mod2 for n ≥ 2,
(17.17)

then the resulting string is a valid string for channel B, because there are no
11s in s, so there are no isolated digits in t. The accumulator is an invertible
operator, so, similarly, any valid string t for channel B can be mapped onto a
valid string s for channel A through the binary differentiator,

s1 = t1
sn = tn − tn−1 mod2 for n ≥ 2.

(17.18)

Because + and − are equivalent in modulo 2 arithmetic, the differentiator is
also a blurrer, convolving the source stream with the filter (1, 1).

Channel C is also intimately related to channels A and B.

. Exercise 17.7.[1, p.257] What is the relationship of channel C to channels A
and B?

�
17.5 Practical communication over constrained channels

OK, how to do it in practice? Since all three channels are equivalent, we can
concentrate on channel A.

Fixed-length solutions

We start with explicitly-enumerated codes. The code in the table 17.8 achieves

s c(s)

1 00000

2 10000

3 01000

4 00100

5 00010

6 10100

7 01010

8 10010

Table 17.8. A runlength-limited
code for channel A.

a rate of 3/5 = 0.6.

. Exercise 17.8.[1, p.257] Similarly, enumerate all strings of length 8 that end in
the zero state. (There are 34 of them.) Hence show that we can map 5
bits (32 source strings) to 8 transmitted bits and achieve rate 5/8 = 0.625.

What rate can be achieved by mapping an integer number of source bits
to N = 16 transmitted bits?
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Optimal variable-length solution

The optimal way to convey information over the constrained channel is to find
the optimal transition probabilities for all points in the trellis, Qs′|s, and make
transitions with these probabilities.

When discussing channel A, we showed that a sparse source with density
f = 0.38, driving code C2, would achieve capacity. And we know how to
make sparsifiers (Chapter 6): we design an arithmetic code that is optimal
for compressing a sparse source; then its associated decoder gives an optimal
mapping from dense (i.e., random binary) strings to sparse strings.

The task of finding the optimal probabilities is given as an exercise.

Exercise 17.9.[3 ] Show that the optimal transition probabilities Q can be found
as follows.

Find the principal right- and left-eigenvectors of A, that is the solutions
of Ae(R) = λe(R) and e(L)TA = λe(L)T with largest eigenvalue λ. Then
construct a matrix Q whose invariant distribution is proportional to

e
(R)
i e

(L)
i , namely

Qs′|s =
e
(L)
s′ As′s

λe
(L)
s

. (17.19)

[Hint: exercise 16.2 (p.245) might give helpful cross-fertilization here.]

. Exercise 17.10.[3, p.258] Show that when sequences are generated using the op-
timal transition probability matrix (17.19), the entropy of the resulting
sequence is asymptotically log2 λ per symbol. [Hint: consider the condi-
tional entropy of just one symbol given the previous one, assuming the
previous one’s distribution is the invariant distribution.]

In practice, we would probably use finite-precision approximations to the
optimal variable-length solution. One might dislike variable-length solutions
because of the resulting unpredictability of the actual encoded length in any
particular case. Perhaps in some applications we would like a guarantee that
the encoded length of a source file of size N bits will be less than a given
length such as N/(C + ε). For example, a disk drive is easier to control if
all blocks of 512 bytes are known to take exactly the same amount of disk
real-estate. For some constrained channels we can make a simple modification
to our variable-length encoding and offer such a guarantee, as follows. We
find two codes, two mappings of binary strings to variable-length encodings,
having the property that for any source string x, if the encoding of x under
the first code is shorter than average, then the encoding of x under the second
code is longer than average, and vice versa. Then to transmit a string x we
encode the whole string with both codes and send whichever encoding has the
shortest length, prepended by a suitably encoded single bit to convey which
of the two codes is being used.





0 1 0
0 0 1
1 1 1





1

1
2

0
0

1
0

0









0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1









1

1
2

1

0
0

1
0

0

0
3

Figure 17.9. State diagrams and
connection matrices for channels
with maximum runlengths for 1s
equal to 2 and 3.

. Exercise 17.11.[3C, p.258] How many valid sequences of length 8 starting with
a 0 are there for the run-length-limited channels shown in figure 17.9?

What are the capacities of these channels?

Using a computer, find the matrices Q for generating a random path
through the trellises of the channel A, and the two run-length-limited
channels shown in figure 17.9.
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. Exercise 17.12.[3, p.258] Consider the run-length-limited channel in which any
length of run of 0s is permitted, and the maximum run length of 1s is a
large number L such as nine or ninety.

Estimate the capacity of this channel. (Give the first two terms in a
series expansion involving L.)

What, roughly, is the form of the optimal matrix Q for generating a
random path through the trellis of this channel? Focus on the values of
the elements Q1|0, the probability of generating a 1 given a preceding 0,
and QL|L−1, the probability of generating a 1 given a preceding run of
L−1 1s. Check your answer by explicit computation for the channel in
which the maximum runlength of 1s is nine.

�
17.6 Variable symbol durations

We can add a further frill to the task of communicating over constrained
channels by assuming that the symbols we send have different durations, and
that our aim is to communicate at the maximum possible rate per unit time.
Such channels can come in two flavours: unconstrained, and constrained.

Unconstrained channels with variable symbol durations

We encountered an unconstrained noiseless channel with variable symbol du-
rations in exercise 6.18 (p.125). Solve that problem, and you’ve done this
topic. The task is to determine the optimal frequencies with which the sym-
bols should be used, given their durations.

There is a nice analogy between this task and the task of designing an
optimal symbol code (Chapter 4). When we make an binary symbol code
for a source with unequal probabilities pi, the optimal message lengths are
l∗i = log2

1/pi, so
pi = 2−l∗

i . (17.20)

Similarly, when we have a channel whose symbols have durations li (in some
units of time), the optimal probability with which those symbols should be
used is

p∗i = 2−βli , (17.21)

where β is the capacity of the channel in bits per unit time.

Constrained channels with variable symbol durations

Once you have grasped the preceding topics in this chapter, you should be
able to figure out how to define and find the capacity of these, the trickiest
constrained channels.

Exercise 17.13.[3 ] A classic example of a constrained channel with variable
symbol durations is the ‘Morse’ channel, whose symbols are

the dot d,
the dash D,
the short space (used between letters in morse code) s, and
the long space (used between words) S;

the constraints are that spaces may only be followed by dots and dashes.

Find the capacity of this channel in bits per unit time assuming (a) that
all four symbols have equal durations; or (b) that the symbol durations
are 2, 4, 3 and 6 time units respectively.
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Exercise 17.14.[4 ] How well-designed is Morse code for English (with, say, the
probability distribution of figure 2.1)?

Exercise 17.15.[3C ] How difficult is it to get DNA into a narrow tube?

To an information theorist, the entropy associated with a constrained
channel reveals how much information can be conveyed over it. In sta-
tistical physics, the same calculations are done for a different reason: to
predict the thermodynamics of polymers, for example.

As a toy example, consider a polymer of length N that can either sit
in a constraining tube, of width L, or in the open where there are no
constraints. In the open, the polymer adopts a state drawn at random
from the set of one dimensional random walks, with, say, 3 possible
directions per step. The entropy of this walk is log 3 per step, i.e., a

Figure 17.10. Model of DNA
squashed in a narrow tube. The
DNA will have a tendency to pop
out of the tube, because, outside
the tube, its random walk has
greater entropy.

total of N log 3. [The free energy of the polymer is defined to be −kT
times this, where T is the temperature.] In the tube, the polymer’s one-
dimensional walk can go in 3 directions unless the wall is in the way, so
the connection matrix is, for example (if L = 10),
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Now, what is the entropy of the polymer? What is the change in entropy
associated with the polymer entering the tube? If possible, obtain an
expression as a function of L. Use a computer to find the entropy of the
walk for a particular value of L, e.g. 20, and plot the probability density
of the polymer’s transverse location in the tube.

Notice the difference in capacity between two channels, one constrained
and one unconstrained, is directly proportional to the force required to
pull the DNA into the tube.

�
17.7 Solutions

Solution to exercise 17.5 (p.250). A file transmitted by C2 contains, on aver-
age, one-third 1s and two-thirds 0s.

If f = 0.38, the fraction of 1s is f/(1+ f) = (γ − 1.0)/(2γ − 1.0) = 0.2764.

Solution to exercise 17.7 (p.254). A valid string for channel C can be obtained
from a valid string for channel A by first inverting it [1 → 0; 0 → 1], then
passing it through an accumulator. These operations are invertible, so any
valid string for C can also be mapped onto a valid string for A. The only
proviso here comes from the edge effects. If we assume that the first character
transmitted over channel C is preceded by a string of zeroes, so that the first
character is forced to be a 1 (figure 17.5c) then the two channels are exactly
equivalent only if we assume that channel A’s first character must be a zero.

Solution to exercise 17.8 (p.254). With N = 16 transmitted bits, the largest
integer number of source bits that can be encoded is 10, so the maximum rate
of a fixed length code with N = 16 is 0.625.


