258

Solution to exercise 17.10 (p.255). Let the invariant distribution be

$$P(s) = \alpha e_s^{(L)} e_s^{(R)},$$
 (17.22)

where α is a normalization constant. The entropy of S_t given S_{t-1} , assuming S_{t-1} comes from the invariant distribution, is

Here, as in Chapter 4, S_t denotes the ensemble whose random variable is the state s_t .

$$H(S_t|S_{t-1}) = -\sum_{s,s'} P(s)P(s'|s)\log P(s'|s)$$
(17.23)

$$= -\sum_{s,s'} \alpha e_s^{(L)} e_s^{(R)} \frac{e_{s'}^{(L)} A_{s's}}{\lambda e_s^{(L)}} \log \frac{e_{s'}^{(L)} A_{s's}}{\lambda e_s^{(L)}}$$
(17.24)

$$= -\sum_{s \ s'} \alpha \ e_s^{(R)} \frac{e_{s'}^{(L)} A_{s's}}{\lambda} \left[\log e_{s'}^{(L)} + \log A_{s's} - \log \lambda - \log e_s^{(L)} \right]. \tag{17.25}$$

Now, $A_{s's}$ is either 0 or 1, so the contributions from the terms proportional to $A_{s's}\log A_{s's}$ are all zero. So

$$H(S_{t}|S_{t-1}) = \log \lambda + -\frac{\alpha}{\lambda} \sum_{s'} \left(\sum_{s} A_{s's} e_{s}^{(R)} \right) e_{s'}^{(L)} \log e_{s'}^{(L)} + \frac{\alpha}{\lambda} \sum_{s} \left(\sum_{s'} e_{s'}^{(L)} A_{s's} \right) e_{s}^{(R)} \log e_{s}^{(L)}$$
(17.26)

$$= \log \lambda - \frac{\alpha}{\lambda} \sum_{s'} \lambda e_{s'}^{(R)} e_{s'}^{(L)} \log e_{s'}^{(L)} + \frac{\alpha}{\lambda} \sum_{s} \lambda e_{s}^{(L)} e_{s}^{(R)} \log e_{s}^{(L)}$$
(17.27)
$$= \log \lambda.$$
(17.28)

Solution to exercise 17.11 (p.255). The principal eigenvalues of the connection matrices of the two channels are 1.839 and 1.928. The capacities ($\log \lambda$) are 0.879 and 0.947 bits.

Solution to exercise 17.12 (p.256). The channel is similar to the unconstrained binary channel; runs of length greater than L are rare if L is large, so we only expect weak differences from this channel; these differences will show up in contexts where the run length is close to L. The capacity of the channel is very close to one bit.

A lower bound on the capacity is obtained by considering the simple variable-length code for this channel which replaces occurrences of the maximum runlength string 111...1 by 111...10, and otherwise leaves the source file unchanged. The average rate of this code is $1/(1+2^{-L})$ because the invariant distribution will hit the 'add an extra zero' state a fraction 2^{-L} of the time.

We can reuse the solution for the variable-length channel in exercise 6.18 (p.125). The capacity is the value of β such that the equation

$$Z(\beta) = \sum_{l=1}^{L+1} 2^{-\beta l} = 1 \tag{17.29}$$

is satisfied. The L+1 terms in the sum correspond to the L+1 possible strings that can be emitted, 0, 10, 110, ..., 11...10. The sum is exactly given by:

$$Z(\beta) = 2^{-\beta} \frac{\left(2^{-\beta}\right)^{L+1} - 1}{2^{-\beta} - 1}.$$
 (17.30)

17.7: Solutions 259

Here we used
$$\sum_{n=0}^{N} ar^n = \frac{a(r^{N+1}-1)}{r-1}.$$

We anticipate that β should be a little less than 1 in order for $Z(\beta)$ to equal 1. Rearranging and solving approximately for β , using $\ln(1+x) \simeq x$,

$$Z(\beta) = 1 \tag{17.31}$$

$$\Rightarrow \beta \simeq 1 - 2^{-(L+2)}/\ln 2.$$
 (17.31)

We evaluated the true capacities for L=2 and L=3 in an earlier exercise. The table compares the approximate capacity β with the true capacity for a selection of values of L.

The element $Q_{1|0}$ will be close to 1/2 (just a tiny bit larger), since in the unconstrained binary channel $Q_{1|0}=1/2$. When a run of length L-1 has occurred, we effectively have a choice of printing 10 or 0. Let the probability of selecting 10 be f. Let us estimate the entropy of the remaining N characters in the stream as a function of f, assuming the rest of the matrix \mathbf{Q} to have been set to its optimal value. The entropy of the next N characters in the stream is the entropy of the first bit, $H_2(f)$, plus the entropy of the remaining characters, which is roughly (N-1) bits if we select 0 as the first bit and (N-2) bits if 1 is selected. More precisely, if C is the capacity of the channel (which is roughly 1),

$$H(\text{the next } N \text{ chars}) \simeq H_2(f) + [(N-1)(1-f) + (N-2)f] C$$

= $H_2(f) + NC - fC \simeq H_2(f) + N - f$. (17.33)

Differentiating and setting to zero to find the optimal f, we obtain:

$$\log_2 \frac{1-f}{f} \simeq 1 \implies \frac{1-f}{f} \simeq 2 \implies f \simeq 1/3. \tag{17.34}$$

The probability of emitting a 1 thus decreases from about 0.5 to about 1/3 as the number of emitted 1s increases.

Here is the optimal matrix:

Our rough theory works.

L	β	True capacity
2	0.910	0.879
3	0.955	0.947
4	0.977	0.975
5	0.9887	0.9881
6	0.9944	0.9942
9	0.9993	0.9993