
Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

258 17 — Communication over Constrained Noiseless Channels

Solution to exercise 17.10 (p.255). Let the invariant distribution be

P (s) = αe(L)
s e(R)

s , (17.22)

where α is a normalization constant. The entropy of St given St−1, assuming Here, as in Chapter 4, St denotes
the ensemble whose random
variable is the state st.

St−1 comes from the invariant distribution, is

H(St|St−1) = −
∑
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Now, As′s is either 0 or 1, so the contributions from the terms proportional to
As′s log As′s are all zero. So
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= log λ. (17.28)

Solution to exercise 17.11 (p.255). The principal eigenvalues of the connection
matrices of the two channels are 1.839 and 1.928. The capacities (log λ) are
0.879 and 0.947 bits.

Solution to exercise 17.12 (p.256). The channel is similar to the unconstrained
binary channel; runs of length greater than L are rare if L is large, so we only
expect weak differences from this channel; these differences will show up in
contexts where the run length is close to L. The capacity of the channel is
very close to one bit.

A lower bound on the capacity is obtained by considering the simple
variable-length code for this channel which replaces occurrences of the maxi-
mum runlength string 111. . .1 by 111. . .10, and otherwise leaves the source file
unchanged. The average rate of this code is 1/(1+2−L) because the invariant
distribution will hit the ‘add an extra zero’ state a fraction 2−L of the time.

We can reuse the solution for the variable-length channel in exercise 6.18
(p.125). The capacity is the value of β such that the equation

Z(β) =
L+1
∑

l=1

2−βl = 1 (17.29)

is satisfied. The L+1 terms in the sum correspond to the L+1 possible strings
that can be emitted, 0, 10, 110, . . . , 11. . .10. The sum is exactly given by:

Z(β) = 2−β

(

2−β
)L+1

− 1

2−β − 1
. (17.30)



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

17.7: Solutions 259

[

Here we used

N
∑

n=0

arn =
a(rN+1 − 1)

r − 1
.

]

We anticipate that β should be a little less than 1 in order for Z(β) to
equal 1. Rearranging and solving approximately for β, using ln(1 + x) ' x,

Z(β) = 1 (17.31)

⇒ β ' 1 − 2−(L+2)/ ln 2. (17.32)

We evaluated the true capacities for L = 2 and L = 3 in an earlier exercise.
The table compares the approximate capacity β with the true capacity for a

L β True capacity

2 0.910 0.879

3 0.955 0.947

4 0.977 0.975

5 0.9887 0.9881

6 0.9944 0.9942

9 0.9993 0.9993

selection of values of L.
The element Q1|0 will be close to 1/2 (just a tiny bit larger), since in the

unconstrained binary channel Q1|0 = 1/2. When a run of length L − 1 has
occurred, we effectively have a choice of printing 10 or 0. Let the probability of
selecting 10 be f . Let us estimate the entropy of the remaining N characters
in the stream as a function of f , assuming the rest of the matrix Q to have
been set to its optimal value. The entropy of the next N characters in the
stream is the entropy of the first bit, H2(f), plus the entropy of the remaining
characters, which is roughly (N −1) bits if we select 0 as the first bit and
(N−2) bits if 1 is selected. More precisely, if C is the capacity of the channel
(which is roughly 1),

H(the next N chars) ' H2(f) + [(N − 1)(1 − f) + (N − 2)f ] C

= H2(f) + NC − fC ' H2(f) + N − f. (17.33)

Differentiating and setting to zero to find the optimal f , we obtain:

log2
1 − f

f
' 1 ⇒

1 − f

f
' 2 ⇒ f ' 1/3. (17.34)

The probability of emitting a 1 thus decreases from about 0.5 to about 1/3 as
the number of emitted 1s increases.

Here is the optimal matrix:

































0 .3334 0 0 0 0 0 0 0 0
0 0 .4287 0 0 0 0 0 0 0
0 0 0 .4669 0 0 0 0 0 0
0 0 0 0 .4841 0 0 0 0 0
0 0 0 0 0 .4923 0 0 0 0
0 0 0 0 0 0 .4963 0 0 0
0 0 0 0 0 0 0 .4983 0 0
0 0 0 0 0 0 0 0 .4993 0
0 0 0 0 0 0 0 0 0 .4998
1 .6666 .5713 .5331 .5159 .5077 .5037 .5017 .5007 .5002

































. (17.35)

Our rough theory works.


