Solution to exercise 17.10 (p.255). Let the invariant distribution be

$$
\begin{equation*}
P(s)=\alpha e_{s}^{(L)} e_{s}^{(R)} \tag{17.22}
\end{equation*}
$$

where α is a normalization constant. The entropy of S_{t} given S_{t-1}, assuming S_{t-1} comes from the invariant distribution, is

$$
\begin{align*}
& H\left(S_{t} \mid S_{t-1}\right)=-\sum_{s, s^{\prime}} P(s) P\left(s^{\prime} \mid s\right) \log P\left(s^{\prime} \mid s\right) \tag{17.23}\\
&=-\sum_{s, s^{\prime}} \alpha e_{s}^{(L)} e_{s}^{(R)} \frac{e_{s^{\prime}}^{(L)} A_{s^{\prime} s}}{\lambda e_{s}^{(L)}} \log \frac{e_{s^{\prime}}^{(L)} A_{s^{\prime} s}}{\lambda e_{s}^{(L)}} \tag{17.24}\\
&=-\sum_{s, s^{\prime}} \alpha e_{s}^{(R)} \frac{e_{s^{\prime}}^{(L)} A_{s^{\prime} s}}{\lambda}\left[\log e_{s^{\prime}}^{(L)}+\log A_{s^{\prime} s}-\log \lambda-\log e_{s}^{(L)}\right] . \tag{17.25}
\end{align*}
$$

Now, $A_{s^{\prime} s}$ is either 0 or 1 , so the contributions from the terms proportional to $A_{s^{\prime} s} \log A_{s^{\prime} s}$ are all zero. So

$$
\begin{align*}
H\left(S_{t} \mid S_{t-1}\right)= & \log \lambda+-\frac{\alpha}{\lambda} \sum_{s^{\prime}}\left(\sum_{s} A_{s^{\prime} s} e_{s}^{(R)}\right) e_{s^{\prime}}^{(L)} \log e_{s^{\prime}}^{(L)}+ \\
& \frac{\alpha}{\lambda} \sum_{s}\left(\sum_{s^{\prime}} e_{s^{\prime}}^{(L)} A_{s^{\prime} s}\right) e_{s}^{(R)} \log e_{s}^{(L)} \tag{17.26}\\
= & \log \lambda-\frac{\alpha}{\lambda} \sum_{s^{\prime}} \lambda e_{s^{\prime}}^{(R)} e_{s^{\prime}}^{(L)} \log e_{s^{\prime}}^{(L)}+\frac{\alpha}{\lambda} \sum_{s} \lambda e_{s}^{(L)} e_{s}^{(R)} \log e_{s}^{(L)} \tag{17.27}\\
= & \log \lambda . \tag{17.28}
\end{align*}
$$

Solution to exercise 17.11 (p.255). The principal eigenvalues of the connection matrices of the two channels are 1.839 and 1.928. The capacities $(\log \lambda)$ are 0.879 and 0.947 bits.

Solution to exercise 17.12 (p .256). The channel is similar to the unconstrained binary channel; runs of length greater than L are rare if L is large, so we only expect weak differences from this channel; these differences will show up in contexts where the run length is close to L. The capacity of the channel is very close to one bit.

A lower bound on the capacity is obtained by considering the simple variable-length code for this channel which replaces occurrences of the maximum runlength string $111 \ldots 1$ by $111 \ldots 10$, and otherwise leaves the source file unchanged. The average rate of this code is $1 /\left(1+2^{-L}\right)$ because the invariant distribution will hit the 'add an extra zero' state a fraction 2^{-L} of the time.

We can reuse the solution for the variable-length channel in exercise 6.18 (p.125). The capacity is the value of β such that the equation

$$
\begin{equation*}
Z(\beta)=\sum_{l=1}^{L+1} 2^{-\beta l}=1 \tag{17.29}
\end{equation*}
$$

is satisfied. The $L+1$ terms in the sum correspond to the $L+1$ possible strings that can be emitted, $0,10,110, \ldots, 11 \ldots 10$. The sum is exactly given by:

$$
\begin{equation*}
Z(\beta)=2^{-\beta} \frac{\left(2^{-\beta}\right)^{L+1}-1}{2^{-\beta}-1} \tag{17.30}
\end{equation*}
$$

Here, as in Chapter 4, S_{t} denotes the ensemble whose random variable is the state s_{t}.
$\left[\right.$ Here we used $\sum_{n=0}^{N} a r^{n}=\frac{a\left(r^{N+1}-1\right)}{r-1}$.]
We anticipate that β should be a little less than 1 in order for $Z(\beta)$ to equal 1. Rearranging and solving approximately for β, using $\ln (1+x) \simeq x$,

$$
\begin{align*}
Z(\beta) & =1 \tag{17.31}\\
\Rightarrow \beta & \simeq 1-2^{-(L+2)} / \ln 2 \tag{17.32}
\end{align*}
$$

We evaluated the true capacities for $L=2$ and $L=3$ in an earlier exercise. The table compares the approximate capacity β with the true capacity for a selection of values of L.

The element $Q_{1 \mid 0}$ will be close to $1 / 2$ (just a tiny bit larger), since in the unconstrained binary channel $Q_{1 \mid 0}=1 / 2$. When a run of length $L-1$ has occurred, we effectively have a choice of printing 10 or 0 . Let the probability of selecting 10 be f. Let us estimate the entropy of the remaining N characters in the stream as a function of f, assuming the rest of the matrix \mathbf{Q} to have been set to its optimal value. The entropy of the next N characters in the stream is the entropy of the first bit, $H_{2}(f)$, plus the entropy of the remaining characters, which is roughly $(N-1)$ bits if we select 0 as the first bit and $(N-2)$ bits if 1 is selected. More precisely, if C is the capacity of the channel (which is roughly 1),

$$
\begin{align*}
H(\text { the next } N \text { chars }) & \simeq H_{2}(f)+[(N-1)(1-f)+(N-2) f] C \\
& =H_{2}(f)+N C-f C \simeq H_{2}(f)+N-f . \tag{17.33}
\end{align*}
$$

Differentiating and setting to zero to find the optimal f, we obtain:

$$
\begin{equation*}
\log _{2} \frac{1-f}{f} \simeq 1 \Rightarrow \frac{1-f}{f} \simeq 2 \Rightarrow f \simeq 1 / 3 \tag{17.34}
\end{equation*}
$$

The probability of emitting a 1 thus decreases from about 0.5 to about $1 / 3$ as the number of emitted 1s increases.

Here is the optimal matrix:

$$
\left[\begin{array}{cccccccccc}
0 & .3334 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{17.35}\\
0 & 0 & .4287 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & .4669 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & .4841 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & .4923 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & .4963 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & .4983 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & .4993 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & .4998 \\
1 & 6666 & .5713 & .5331 & .5159 & .5077 & .5037 & .5017 & .5007 & .5002
\end{array}\right]
$$

Our rough theory works.

