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18

Crosswords and Codebreaking

In this chapter we make a random walk through a few topics related to lan-
guage modelling.

» 18.1 Crosswords

The rules of crossword-making may be thought of as defining a constrained
channel. The fact that many valid crosswords can be made demonstrates that
this constrained channel has a capacity greater than zero.

There are two archetypal crossword formats. In a ‘type A’ (or American)

. . S[A[s[s
crossword, every row and column consists of a succession of words of length 2 8 f:\ g i ﬁ 1A
or more separated by one or more spaces. In a ‘type B’ (or British) crossword, E /; g i g E E
each row and column consists of a mixture of words and single characters, M EATSE
separated by one or more spaces, and every character lies in at least one word i T <L> $ EH
(horizontal or vertical). Whereas in a type A crossword every letter lies in a UlT[A[H E[R[A|S
horizontal word and a vertical word, in a typical type B crossword only about H: . f\ m f\‘) E E
half of the letters do so; the other half lie in one word only. G|AIR|G M TRY

Type A crosswords are harder to create than type B because of the con- Lo 8 . g Lo
straint that no single characters are permitted. Type B crosswords are gener- DIE|E[S I A[O[R[TIAMAIE[R]O
ally harder to solve because there are fewer constraints per character. S|U[RIERSITIEIEIPEMHIEILIM

BJA[N]G[E[RIME[AIK[ER[ T[E[S
W ds possible? e O
are crosswords possible? ARILLIJAIMIEIN| TECIAIT

Y P o]
If a language has no redundancy, then any letters written on a grid form a
valid crossword. In a language with high redundancy, on the other hand, it R D]
is hard to make crosswords (except perhaps a small number of trivial ones)

. ' ptp b : IR] [E|PS]
The possibility of making crosswords in a language thus demonstrates a bound -. E .Eﬂ
. . ulE[T T K[E
on the redundancy of that language. Crosswords are not normally written in R]
genuine English. They are written in ‘word-English’, the language consisting HLTL [S|T[A[R]
. - E [E 1] T
of strings of words from a dictionary, separated by spaces. BIRIIISITILIEISEUAIUISITIEIN

> Exercise 18.1.1%] Estimate the capacity of word-English, in bits per character.  Figure 18.1. Crosswords of types
[Hint: think of word-English as defining a constrained channel (Chapter =~ A (American) and B (British).
17) and see exercise 6.18 (p.125).]

The fact that many crosswords can be made leads to a lower bound on the
entropy of word-English.

For simplicity, we now model word-English by Wenglish, the language in-
troduced in section 4.1 which consists of W words all of length L. The entropy
of such a language, per character, including inter-word spaces, is:

logo W

Hy = . 18.1
R (18.1)
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18.1: Crosswords 261
We’ll find that the conclusions we come to depend on the value of Hy and A B

are not terribly sensitive to the value of L. Consider a large crossword of size 9 1

S squares in area. Let the number of words be f,,S and let the number of fu I+1 IL+1
letter-occupied squares be f1.5. For typical crosswords of types A and B made L 3 L

of words of length L, the two fractions f,, and fi; have roughly the values in h L+1 4L+1

table 18.2.

We now estimate how many crosswords there are of size S using our simple  Table 18.2. Factors [, and fi by
model of Wenglish. We assume that Wenglish is created at random by gener- ~ Which the number of words and
ating W strings from a monogram (i.e., memoryless) source with entropy Hy. ?:s,?s‘ftri\?efl;e;ir;;l;f{:ihan the
If, for example, the source used all A = 26 characters with equal probability | .1 Lumber of squares.
then Hy = logy A = 4.7 bits. If instead we use Chapter 2’s distribution then
the entropy is 4.2. The redundancy of Wenglish stems from two sources: it
tends to use some letters more than others; and there are only W words in
the dictionary.

Let’s now count how many crosswords there are by imagining filling in
the squares of a crossword at random using the same distribution that pro-
duced the Wenglish dictionary and evaluating the probability that this random
scribbling produces valid words in all rows and columns. The total number of
typical fillings-in of the f1.5 squares in the crossword that can be made is

|T| = 2/15Ho, (18.2)

The probability that one word of length L is validly filled-in is

w
8= SLHy (18.3)
and the probability that the whole crossword, made of f,,S words, is validly
filled-in by a single typical in-filling is approximately This calculation underestimates
the number of valid Wenglish
Bfes. (18.4)  crosswords by counting only
crosswords filled with ‘typical’
So the log of the number of valid crosswords of size S is estimated to be strings. If the monogram
distribution is non-uniform then
log ﬁwa|T| = S[(f1 — fwLl)Ho + fulog W] (18.5)  the true count is dominated by
. ‘atypical’ fillings-in, in which
= S[(fi — ful)Ho + fu(L +1)Hw], (18.6) crossword-friendly words appear
more often.

which is an increasing function of S only if
(f1 = fuL)Ho + fu(L+1)Hy > 0. (18.7)

So arbitrarily many crosswords can be made only if there’s enough words in
the Wenglish dictionary that

(wa - fl)
Hy > mHO. (18.8)

Plugging in the values of f; and f,, from table 18.2, we find the following.

Crossword type A B

i 1 L 1 L
Condition for crosswords  Hw > 3777Ho Hw > 37 7Ho

If we set Hy = 4.2 bits and assume there are W = 4000 words in a normal
English-speaker’s dictionary, all with length L = 5, then we find that the
condition for crosswords of type B is satisfied, but the condition for crosswords
of type A is only just satisfied. This fits with my experience that crosswords
of type A usually contain more obscure words.
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262 18 — Crosswords and Codebreaking

Further reading

These observations about crosswords were first made by Shannon (1948); I
learned about them from Wolf and Siegel (1998). The topic is closely related
to the capacity of two-dimensional constrained channels. An example of a
two-dimensional constrained channel is a two-dimensional bar-code, as seen
on parcels.

Exercise 18.2.1%] A two-dimensional channel is defined by the constraint that,
of the eight neighbours of every interior pixel in an N x N rectangular
grid, four must be black and four white. (The counts of black and white
pixels around boundary pixels are not constrained.) A binary pattern  Figure 18.3. A binary pattern in
satisfying this constraint is shown in figure 18.3. What is the capacity ~ Which every pixel is adjacent to

. s . 2 four black and four white pixels.
of this channel, in bits per pixel, for large N7

» 18.2 Simple language models

The Zipf-Mandelbrot distribution

The crudest model for a language is the monogram model, which asserts that
each successive word is drawn independently from a distribution over words.
What is the nature of this distribution over words?

Zipt’s law (Zipf, 1949) asserts that the probability of the rth most probable
word in a language is approximately

Py =2, (18.9)

where the exponent « has a value close to 1, and « is a constant. According
to Zipf, a log-log plot of frequency versus word-rank should show a straight
line with slope —a.
Mandelbrot’s (1982) modification of Zipf’s law introduces a third param-
eter v, asserting that the probabilities are given by
K

For some documents, such as Jane Austen’s Emma, the Zipf—~Mandelbrot dis-
tribution fits well — figure 18.4.

Other documents give distributions that are not so well fitted by a Zipf—
Mandelbrot distribution. Figure 18.5 shows a plot of frequency versus rank for
the IATEX source of this book. Qualitatively, the graph is similar to a straight
line, but a curve is noticeable. To be fair, this source file is not written in
pure English — it is a mix of English, maths symbols such as ‘x’, and KTEX
commands.

Figure 18.4. Fit of the
Zipf—-Mandelbrot distribution
(18.10) (curve) to the empirical
frequencies of words in Jane
Austen’s Emma (dots). The fitted
parameters are k = 0.56; v = 8.0;
a = 1.26.

tot hearbq

0. 001

i nf or mati on

0. 0001 robability

le-05
1 10 100 1000 10000



