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The Dirichlet process

Assuming we are interested in monogram models for languages, what model
should we use? One difficulty in modelling a language is the unboundedness
of vocabulary. The greater the sample of language, the greater the number
of words encountered. A generative model for a language should emulate
this property. If asked ‘what is the next word in a newly-discovered work
of Shakespeare?’ our probability distribution over words must surely include
some non-zero probability for words that Shakespeare never used before. Our
generative monogram model for language should also satisfy a consistency
rule called exchangeability. If we imagine generating a new language from
our generative model, producing an ever-growing corpus of text, all statistical
properties of the text should be homogeneous: the probability of finding a
particular word at a given location in the stream of text should be the same
everywhere in the stream.

The Dirichlet process model is a model for a stream of symbols (which we
think of as ‘words’) that satisfies the exchangeability rule and that allows the
vocabulary of symbols to grow without limit. The model has one parameter
«. As the stream of symbols is produced, we identify each new symbol by a
unique integer w. When we have seen a stream of length F' symbols, we define
the probability of the next symbol in terms of the counts {F},} of the symbols
seen so far thus: the probability that the next symbol is a new symbol, never

seen before, is
e}

. 18.11
F+a ( )
The probability that the next symbol is symbol w is
Fy
. 18.12
F+ao ( )

Figure 18.6 shows Zipf plots (i.e., plots of symbol frequency versus rank) for
million-symbol ‘documents’ generated by Dirichlet process priors with values
of a ranging from 1 to 1000.

It is evident that a Dirichlet process is not an adequate model for observed
distributions that roughly obey Zipf’s law.
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264 18 — Crosswords and Codebreaking
01 . Figure 18.7. Zipf plots for the
o words of two ‘languages’
0.01 Y generated by creating successive
~ characters from a Dirichlet

process with a = 2, and declaring
one character to be the space
character. The two curves result
0.0001 from two different choices of the
space character.
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With a small tweak, however, Dirichlet processes can produce rather nice
Zipf plots. Imagine generating a language composed of elementary symbols
using a Dirichlet process with a rather small value of the parameter «, so that
the number of reasonably frequent symbols is about 27. If we then declare
one of those symbols (now called ‘characters’ rather than words) to be a space
character, then we can identify the strings between the space characters as
‘words’. If we generate a language in this way then the frequencies of words
often come out as very nice Zipf plots, as shown in figure 18.7. Which character
is selected as the space character determines the slope of the Zipf plot — a less
probable space character gives rise to a richer language with a shallower slope.

» 18.3 Units of information content

The information content of an outcome, =, whose probability is P(x), is defined

to be 1
h(xz) =log ——. 18.1
(z) = log @) (18.13)
The entropy of an ensemble is an average information content,
1
H(X)= P(z)log —. 18.14
(X) = X P)og 5 (18.14)

When we compare hypotheses with each other in the light of data, it is of-
ten convenient to compare the log of the probability of the data under the
alternative hypotheses,

‘log evidence for H;’ = log P(D | H,;), (18.15)
or, in the case where just two hypotheses are being compared, we evaluate the
‘log odds’,

P(D|H.1)
log —— 12 18.16
5 P(D[ ) (1810

which has also been called the ‘weight of evidence in favour of H;’. The
log evidence for a hypothesis, log P(D | H;) is the negative of the information
content of the data D: if the data have large information content, given a hy-
pothesis, then they are surprising to that hypothesis; if some other hypothesis
is not so surprised by the data, then that hypothesis becomes more probable.
‘Information content’, ‘surprise value’, and log likelihood or log evidence are
the same thing.

All these quantities are logarithms of probabilities, or weighted sums of
logarithms of probabilities, so they can all be measured in the same units.
The units depend on the choice of the base of the logarithm.

The names that have been given to these units are shown in table 18.8.



