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21

Exact Inference by Complete

Enumeration

We open our toolbox of methods for handling probabilities by discussing a
brute-force inference method: complete enumeration of all hypotheses, and
evaluation of their probabilities. This approach is an exact method, and the
difficulty of carrying it out will motivate the smarter exact and approximate
methods introduced in the following chapters.

�
21.1 The burglar alarm

Bayesian probability theory is sometimes called ‘common sense, amplified’.
When thinking about the following questions, please ask your common sense
what it thinks the answers are; we will then see how Bayesian methods confirm
your everyday intuition.
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Figure 21.1. Belief network for the
burglar alarm problem.

Example 21.1. Fred lives in Los Angeles and commutes 60 miles to work.
Whilst at work, he receives a phone-call from his neighbour saying that
Fred’s burglar alarm is ringing. What is the probability that there was
a burglar in his house today? While driving home to investigate, Fred
hears on the radio that there was a small earthquake that day near his
home. ‘Oh’, he says, feeling relieved, ‘it was probably the earthquake
that set off the alarm’. What is the probability that there was a burglar
in his house? (After Pearl, 1988).

Let’s introduce variables b (a burglar was present in Fred’s house today),
a (the alarm is ringing), p (Fred receives a phonecall from the neighbour re-
porting the alarm), e (a small earthquake took place today near Fred’s house),
and r (the radio report of earthquake is heard by Fred). The probability of
all these variables might factorize as follows:

P (b, e, a, p, r) = P (b)P (e)P (a | b, e)P (p | a)P (r | e), (21.1)

and plausible values for the probabilities are:

1. Burglar probability:

P (b=1) = β, P (b=0) = 1 − β, (21.2)

e.g., β = 0.001 gives a mean burglary rate of once every three years.

2. Earthquake probability:

P (e=1) = ε, P (e=0) = 1 − ε, (21.3)
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with, e.g., ε = 0.001; our assertion that the earthquakes are independent
of burglars, i.e., the prior probability of b and e is P (b, e) = P (b)P (e),
seems reasonable unless we take into account opportunistic burglars who
strike immediately after earthquakes.

3. Alarm ringing probability: we assume the alarm will ring if any of the
following three events happens: (a) a burglar enters the house, and trig-
gers the alarm (let’s assume the alarm has a reliability of αb = 0.99, i.e.,
99% of burglars trigger the alarm); (b) an earthquake takes place, and
triggers the alarm (perhaps αe = 1% of alarms are triggered by earth-
quakes?); or (c) some other event causes a false alarm; let’s assume the
false alarm rate f is 0.001, so Fred has false alarms from non-earthquake
causes once every three years. [This type of dependence of a on b and e
is known as a ‘noisy-or’.] The probabilities of a given b and e are then:

P (a=0 | b=0, e=0) = (1 − f), P (a=1 | b=0, e=0) = f
P (a=0 | b=1, e=0) = (1 − f)(1 − αb), P (a=1 | b=1, e=0) = 1 − (1 − f)(1 − αb)
P (a=0 | b=0, e=1) = (1 − f)(1 − αe), P (a=1 | b=0, e=1) = 1 − (1 − f)(1 − αe)
P (a=0 | b=1, e=1) = (1 − f)(1 − αb)(1 − αe), P (a=1 | b=1, e=1) = 1 − (1 − f)(1 − αb)(1 − αe)

or, in numbers,

P (a=0 | b=0, e=0) = 0.999, P (a=1 | b=0, e=0) = 0.001
P (a=0 | b=1, e=0) = 0.009 99, P (a=1 | b=1, e=0) = 0.990 01
P (a=0 | b=0, e=1) = 0.989 01, P (a=1 | b=0, e=1) = 0.010 99
P (a=0 | b=1, e=1) = 0.009 890 1, P (a=1 | b=1, e=1) = 0.990 109 9.

We assume the neighbour would never phone if the alarm is not ringing
[P (p=1 | a=0) = 0]; and that the radio is a trustworthy reporter too
[P (r =1 | e=0) = 0]; we won’t need to specify the probabilities P (p=1 | a=1)
or P (r =1 | e=1) in order to answer the questions above, since the outcomes
p = 1 and r =1 give us certainty respectively that a=1 and e=1.

We can answer the two questions about the burglar by computing the
posterior probabilities of all hypotheses given the available information. Let’s
start by reminding ourselves that the probability that there is a burglar, before
either p or r is observed, is P (b=1) = β = 0.001, and the probability that an
earthquake took place is P (e=1) = ε = 0.001, and these two propositions are
independent.

First, when p=1, we know that the alarm is ringing: a=1. The posterior
probability of b and e becomes:

P (b, e | a=1) =
P (a=1 | b, e)P (b)P (e)

P (a=1)
. (21.4)

The numerator’s four possible values are

P (a=1 | b=0, e=0) × P (b=0) × P (e=0) = 0.001 × 0.999× 0.999 = 0.000 998
P (a=1 | b=1, e=0) × P (b=1) × P (e=0) = 0.990 01 × 0.001× 0.999 = 0.000 989
P (a=1 | b=0, e=1) × P (b=0) × P (e=1) = 0.010 99 × 0.999× 0.001 = 0.000 010 979
P (a=1 | b=1, e=1) × P (b=1) × P (e=1) = 0.990 109 9× 0.001× 0.001 = 9.9 × 10−7.

The normalizing constant is the sum of these four numbers, P (a=1) = 0.002,
and the posterior probabilities are

P (b=0, e=0 | a=1) = 0.4993
P (b=1, e=0 | a=1) = 0.4947
P (b=0, e=1 | a=1) = 0.0055
P (b=1, e=1 | a=1) = 0.0005.

(21.5)
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To answer the question, ‘what’s the probability a burglar was there?’ we
marginalize over the earthquake variable e:

P (b=0 | a=1) = P (b=0, e=0 | a=1) + P (b=0, e=1 | a=1) = 0.505
P (b=1 | a=1) = P (b=1, e=0 | a=1) + P (b=1, e=1 | a=1) = 0.495.

(21.6)
So there is nearly a 50% chance that there was a burglar present. It is impor-
tant to note that the variables b and e, which were independent a priori, are
now dependent. The posterior distribution (21.5) is not a separable function of
b and e. This fact is illustrated most simply by studying the effect of learning
that e = 1.

When we learn e=1, the posterior probability of b is given by
P (b | e=1, a=1) = P (b, e=1 | a=1)/P (e=1 | a=1), i.e., by dividing the bot-
tom two rows of (21.5), by their sum P (e=1 | a=1) = 0.0060. The posterior
probability of b is:

P (b=0 | e=1, a=1) = 0.92
P (b=1 | e=1, a=1) = 0.08.

(21.7)

There is thus now an 8% chance that a burglar was in Fred’s house. It is
in accordance with everyday intuition that the probability that b=1 (a pos-
sible cause of the alarm) reduces when Fred learns that an earthquake, an
alternative explanation of the alarm, has happened.

Explaining away

This phenomenon, that one of the possible causes (b=1) of some data (the
data in this case being a=1) becomes less probable when another of the causes
(e=1) becomes more probable, even though those two causes were indepen-
dent variables a priori, is known as explaining away. Explaining away is an
important feature of correct inferences, and one that any artificial intelligence
should replicate.

If we believe that the neighbour and the radio service are unreliable or
capricious, so that we are not certain that the alarm really is ringing or that
an earthquake really has happened, the calculations become more complex,
but the explaining-away effect persists; the arrival of the earthquake report r
simultaneously makes it more probable that the alarm truly is ringing, and
less probable that the burglar was present.

In summary, we solved the inference questions about the burglar by enu-
merating all four hypotheses about the variables (b, e), finding their posterior
probabilities, and marginalizing to obtain the required inferences about b.

. Exercise 21.2.
[2 ] After Fred receives the phone-call about the burglar alarm,

but before he hears the radio report, what, from his point of view, is the
probability that there was a small earthquake today?

�
21.2 Exact inference for continuous hypothesis spaces

Many of the hypothesis spaces we will consider are naturally thought of as
continuous. For example, the unknown decay length λ of section 3.1 (p.48)
lives in a continuous one-dimensional space; and the unknown mean and stan-
dard deviation of a Gaussian µ, σ live in a continuous two-dimensional space.
In any practical computer implementation, such continuous spaces will neces-
sarily be discretized, however, and so can, in principle, be enumerated – at a
grid of parameter values, for example. In figure 3.2 we plotted the likelihood
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Figure 21.2. Enumeration of an
entire (discretized) hypothesis
space for one Gaussian with
parameters µ (horizontal axis)
and σ (vertical).

function for the decay length as a function of λ by evaluating the likelihood
at a finely-spaced series of points.

A two-parameter model

Let’s look at the Gaussian distribution as an example of a model with a two-
dimensional hypothesis space. The one-dimensional Gaussian distribution is
parameterized by a mean µ and a standard deviation σ:

P (x |µ, σ) =
1√
2πσ

exp

(

−(x − µ)2

2σ2

)

≡ Normal(x;µ, σ2). (21.8)

Figure 21.2 shows an enumeration of one hundred hypotheses about the mean
and standard deviation of a one-dimensional Gaussian distribution. These
hypotheses are evenly spaced in a ten by ten square grid covering ten values
of µ and ten values of σ. Each hypothesis is represented by a picture showing
the probability density that it puts on x. We now examine the inference of µ

-0.5 0 0.5 1 1.5 2 2.5

Figure 21.3. Five datapoints
{xn}5

n=1
. The horizontal

coordinate is the value of the
datum, xn; the vertical coordinate
has no meaning.

and σ given data points xn, n = 1, . . . , N , assumed to be drawn independently
from this density.

Imagine that we acquire data, for example the five points shown in fig-
ure 21.3. We can now evaluate the posterior probability of each of the one
hundred subhypotheses by evaluating the likelihood of each, that is, the value
of P ({xn}5

n=1 |µ, σ). The likelihood values are shown diagrammatically in
figure 21.4 using the line thickness to encode the value of the likelihood. Sub-
hypotheses with likelihood smaller than e−8 times the maximum likelihood
have been deleted.

Using a finer grid, we can represent the same information by plotting the
likelihood as a surface plot or contour plot as a function of µ and σ (figure 21.5).

A five-parameter mixture model

Eyeballing the data (figure 21.3), you might agree that it seems more plau-
sible that they come not from a single Gaussian but from a mixture of two
Gaussians, defined by two means, two standard deviations, and two mixing
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Figure 21.4. Likelihood function,
given the data of figure 21.3,
represented by line thickness.
Subhypotheses having likelihood
smaller than e−8 times the
maximum likelihood are not
shown.
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Figure 21.5. The likelihood
function for the parameters of a
Gaussian distribution.
Surface plot and contour plot of
the log likelihood as a function of
µ and σ. The data set of N = 5
points had mean x̄ = 1.0 and
S =

∑

(x − x̄)2 = 1.0.
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Figure 21.6. Enumeration of the
entire (discretized) hypothesis
space for a mixture of two
Gaussians. Weight of the mixture
components is π1, π2 = 0.6, 0.4 in
the top half and 0.8, 0.2 in the
bottom half. Means µ1 and µ2

vary horizontally, and standard
deviations σ1 and σ2 vary
vertically.

coefficients π1 and π2, satisfying π1 + π2 = 1, πi ≥ 0.

P (x |µ1, σ1, π1, µ2, σ2, π2) =
π1√
2πσ1

exp
(

− (x−µ1)2

2σ2

1

)

+
π2√
2πσ2

exp
(

− (x−µ2)2

2σ2

2

)

Let’s enumerate the subhypotheses for this alternative model. The parameter
space is five-dimensional, so it becomes challenging to represent it on a single
page. Figure 21.6 enumerates 800 subhypotheses with different values of the
five parameters µ1, µ2, σ1, σ2, π1. The means are varied between five values
each in the horizontal directions. The standard deviations take on four values
each vertically. And π1 takes on two values vertically. We can represent the
inference about these five parameters in the light of the five datapoints as
shown in figure 21.7.

If we wish to compare the one-Gaussian model with the mixture-of-two
model, we can find the models’ posterior probabilities by evaluating the
marginal likelihood or evidence for each model H, P ({x} |H). The evidence
is given by integrating over the parameters, θ; the integration can be imple-
mented numerically by summing over the alternative enumerated values of
θ,

P ({x} |H) =
∑

�

P (θ)P ({x} |θ,H), (21.9)

where P (θ) is the prior distribution over the grid of parameter values, which
I take to be uniform.

For the mixture of two Gaussians this integral is a five-dimensional integral;
if it is to be performed at all accurately, the grid of points will need to be
much finer than the grids shown in the figures. If the uncertainty about each
of K parameters has been reduced by, say, a factor of ten by observing the
data, then brute-force integration requires a grid of at least 10K points. This
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Figure 21.7. Inferring a mixture of
two Gaussians. Likelihood
function, given the data of
figure 21.3, represented by line
thickness. The hypothesis space is
identical to that shown in
figure 21.6. Subhypotheses having
likelihood smaller than e−8 times
the maximum likelihood are not
shown, hence the blank regions,
which correspond to hypotheses
that the data have ruled out.
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exponential growth of computation with model size is the reason why complete
enumeration is rarely a feasible computational strategy.

Exercise 21.3.
[1 ] Imagine fitting a mixture of ten Gaussians to data in a

twenty-dimensional space. Estimate the computational cost of imple-
menting inferences for this model by enumeration of a grid of parameter
values.


