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24

Exact Marginalization

How can we avoid the exponentially large cost of complete enumeration of
all hypotheses? Before we stoop to approximate methods, we explore two
approaches to exact marginalization: first, marginalization over continuous
variables (sometimes known as nuisance parameters) by doing integrals; and
second, summation over discrete variables by message-passing.

Exact marginalization over continuous parameters is a macho activity en-
joyed by those who are fluent in definite integration. This chapter uses gamma
distributions; as was explained in the previous chapter, gamma distributions
are a lot like Gaussian distributions, except that whereas the Gaussian goes
from −∞ to ∞, gamma distributions go from 0 to ∞.

�
24.1 Inferring the mean and variance of a Gaussian distribution

We discuss again the one-dimensional Gaussian distribution, parameterized
by a mean µ and a standard deviation σ:

P (x |µ, σ) =
1√
2πσ

exp

(

−(x − µ)2

2σ2

)

≡ Normal(x;µ, σ2). (24.1)

When inferring these parameters, we must specify their prior distribution.
The prior gives us the opportunity to include specific knowledge that we have
about µ and σ (from independent experiments, or on theoretical grounds, for
example). If we have no such knowledge, then we can construct an appropriate
prior that embodies our supposed ignorance. In section 21.2, we assumed a
uniform prior over the range of parameters plotted. If we wish to be able to
perform exact marginalizations, it may be useful to consider conjugate priors;
these are priors whose functional form combines naturally with the likelihood
such that the inferences have a convenient form.

Conjugate priors for µ and σ

The conjugate prior for a mean µ is a Gaussian: we introduce two ‘hy-
perparameters’, µ0 and σµ, which parameterize the prior on µ, and write
P (µ |µ0, σµ) = Normal(µ;µ0, σ

2
µ). In the limit µ0 =0, σµ → ∞, we obtain

the noninformative prior for a location parameter, the flat prior. This is
noninformative because it is invariant under the natural reparameterization
µ′ = µ+ c. The prior P (µ) = const. is also an improper prior, that is, it is not
normalizable.

The conjugate prior for a standard deviation σ is a gamma distribution,
which has two parameters bβ and cβ . It is most convenient to define the prior
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320 24 — Exact Marginalization

density of the inverse variance (the precision parameter) β = 1/σ2:

P (β) = Γ(β; bβ , cβ) =
1

Γ(cβ)

βcβ−1

b
cβ

β

exp

(

− β

bβ

)

, 0 ≤ β < ∞. (24.2)

This is a simple peaked distribution with mean bβcβ and variance b2
βcβ . In

the limit bβcβ = 1, cβ → 0, we obtain the noninformative prior for a scale
parameter, the 1/σ prior. This is ‘noninformative’ because it is invariant
under the reparameterization σ′ = cσ. The 1/σ prior is less strange-looking if
we examine the resulting density over lnσ, or lnβ, which is flat. This is the Reminder: when we change

variables from σ to l(σ), a
one-to-one function of σ, the
probability density transforms
from Pσ(σ) to

Pl(l) = Pσ(σ)

∣

∣

∣

∣

∂σ

∂l

∣

∣

∣

∣

.

Here, the Jacobian is

∣

∣

∣

∣

∂σ

∂ ln σ

∣

∣

∣

∣

= σ.

prior that expresses ignorance about σ by saying ‘well, it could be 10, or it
could be 1, or it could be 0.1, . . . ’ Scale variables such as σ are usually best
represented in terms of their logarithm. Again, this noninformative 1/σ prior
is improper.

In the following examples, I will use the improper noninformative priors
for µ and σ. Using improper priors is viewed as distasteful in some circles,
so let me excuse myself by saying it’s for the sake of readability; if I included
proper priors, the calculations could still be done but the key points would be
obscured by the flood of extra parameters.

Maximum likelihood and marginalization: σN and σN−1

The task of inferring the mean and standard deviation of a Gaussian distribu-
tion from N samples is a familiar one, though maybe not everyone understands
the difference between the σN and σN−1 buttons on their calculator. Let us
recap the formulae, then derive them.

Given data D = {xn}N
n=1, an ‘estimator’ of µ is

x̄ ≡ ∑N
n=1 xn/N, (24.3)

and two estimators of σ are:

σN ≡

√

∑N
n=1(xn − x̄)2

N
and σN−1 ≡

√

∑N
n=1(xn − x̄)2

N − 1
. (24.4)

There are two principal paradigms for statistics: sampling theory and Bayesian
inference. In sampling theory (also known as ‘frequentist’ or orthodox statis-
tics), one invents estimators of quantities of interest and then chooses between
those estimators using some criterion measuring their sampling properties;
there is no clear principle for deciding which criterion to use to measure the
performance of an estimator; nor, for most criteria, is there any systematic
procedure for the construction of optimal estimators. In Bayesian inference,
in contrast, once we have made explicit all our assumptions about the model
and the data, our inferences are mechanical. Whatever question we wish to
pose, the rules of probability theory give a unique answer which consistently
takes into account all the given information. Human-designed estimators and
confidence intervals have no role in Bayesian inference; human input only en-
ters into the important tasks of designing the hypothesis space (that is, the
specification of the model and all its probability distributions), and figuring
out how to do the computations that implement inference in that space. The
answers to our questions are probability distributions over the quantities of
interest. We often find that the estimators of sampling theory emerge auto-
matically as modes or means of these posterior distributions when we choose
a simple hypothesis space and turn the handle of Bayesian inference.
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Figure 24.1. The likelihood
function for the parameters of a
Gaussian distribution, repeated
from figure 21.5.
(a1, a2) Surface plot and contour
plot of the log likelihood as a
function of µ and σ. The data set
of N = 5 points had mean x̄ = 1.0
and S =

∑

(x − x̄)2 = 1.0. Notice
that the maximum is skew in σ.
The two estimators of standard
deviation have values σN = 0.45
and σN−1 = 0.50.
(c) The posterior probability of σ
for various fixed values of µ
(shown as a density over ln σ).
(d) The posterior probability of σ,
P (σ |D), assuming a flat prior on
µ, obtained by projecting the
probability mass in (a) onto the σ
axis. The maximum of P (σ |D) is
at σN−1. By contrast, the
maximum of P (σ |D, µ = x̄) is at
σN . (Both probabilities are shows
as densities over ln σ.)

In sampling theory, the estimators above can be motivated as follows. x̄ is
an unbiased estimator of µ which, out of all the possible unbiased estimators
of µ, has smallest variance (where this variance is computed by averaging over
an ensemble of imaginary experiments in which the data samples are assumed
to come from an unknown Gaussian distribution). The estimator (x̄, σN) is the
maximum likelihood estimator for (µ, σ). The estimator σN is biased, however:
the expectation of σN , given σ, averaging over many imagined experiments, is
not σ.

Exercise 24.1.[2, p.323] Give an intuitive explanation why the estimator σN is
biased.

This bias motivates the invention, in sampling theory, of σN−1, which can be
shown to be an unbiased estimator. Or to be precise, it is σ2

N−1
that is an

unbiased estimator of σ2.
We now look at some Bayesian inferences for this problem, assuming non-

informative priors for µ and σ. The emphasis is thus not on the priors, but
rather on (a) the likelihood function, and (b) the concept of marginalization.
The joint posterior probability of µ and σ is proportional to the likelihood
function illustrated by a contour plot in figure 24.1a. The log likelihood is:

lnP ({xn}N
n=1 |µ, σ) = −N ln(

√
2πσ) −

∑

n

(xn − µ)2/(2σ2), (24.5)

= −N ln(
√

2πσ) − [N(µ − x̄)2 + S]/(2σ2), (24.6)

where S ≡ ∑

n(xn − x̄)2. Given the Gaussian model, the likelihood can be
expressed in terms of the two functions of the data x̄ and S, so these two
quantities are known as ‘sufficient statistics’. The posterior probability of µ
and σ is, using the improper priors:

P (µ, σ | {xn}N
n=1) =

P ({xn}N
n=1 |µ, σ)P (µ, σ)

P ({xn}N
n=1)

(24.7)

=

1

(2πσ2)N/2
exp

(

−N(µ−x̄)2+S

2σ2

)

1
σµ

1
σ

P ({xn}N
n=1)

. (24.8)
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This function describes the answer to the question, ‘given the data, and the
noninformative priors, what might µ and σ be?’ It may be of interest to find
the parameter values that maximize the posterior probability, though it should
be emphasized that posterior probability maxima have no fundamental status
in Bayesian inference, since their location depends on the choice of basis. Here
we choose the basis (µ, ln σ), in which our prior is flat, so that the posterior
probability maximum coincides with the maximum of the likelihood. As we
saw in exercise 22.4 (p.302), the maximum likelihood solution for µ and lnσ

is {µ, σ}ML =
{

x̄, σN =
√

S/N
}

.

There is more to the posterior distribution than just its mode. As can
be seen in figure 24.1a, the likelihood has a skew peak. As we increase σ,
the width of the conditional distribution of µ increases (figure 22.1b). And
if we fix µ to a sequence of values moving away from the sample mean x̄, we
obtain a sequence of conditional distributions over σ whose maxima move to
increasing values of σ (figure 24.1c).

The posterior probability of µ given σ is

P (µ | {xn}N
n=1, σ) =

P ({xn}N
n=1 |µ, σ)P (µ)

P ({xn}N
n=1 |σ)

(24.9)

∝ exp(−N(µ − x̄)2/(2σ2)) (24.10)

= Normal(µ; x̄, σ2/N). (24.11)

We note the familiar σ/
√

N scaling of the error bars on µ.
Let us now ask the question ‘given the data, and the noninformative priors,

what might σ be?’ This question differs from the first one we asked in that we
are now not interested in µ. This parameter must therefore be marginalized

over. The posterior probability of σ is:

P (σ | {xn}N
n=1) =

P ({xn}N
n=1 |σ)P (σ)

P ({xn}N
n=1)

. (24.12)

The data-dependent term P ({xn}N
n=1 |σ) appeared earlier as the normalizing

constant in equation (24.9); one name for this quantity is the ‘evidence’, or
marginal likelihood, for σ. We obtain the evidence for σ by integrating out
µ; a noninformative prior P (µ) = constant is assumed; we call this constant
1/σµ, so that we can think of the prior as a top-hat prior of width σµ. The
Gaussian integral, P ({xn}N

n=1 |σ) =
∫

P ({xn}N
n=1 |µ, σ)P (µ) dµ, yields:

lnP ({xn}N
n=1 |σ) = −N ln(

√
2πσ) − S

2σ2
+ ln

√
2πσ/

√
N

σµ
. (24.13)

The first two terms are the best-fit log likelihood (i.e., the log likelihood with
µ = x̄). The last term is the log of the Occam factor which penalizes smaller
values of σ. (We will discuss Occam factors more in Chapter 28.) When we
differentiate the log evidence with respect to lnσ, to find the most probable
σ, the additional volume factor (σ/

√
N) shifts the maximum from σN to

σN−1 =
√

S/(N − 1). (24.14)

Intuitively, the denominator (N−1) counts the number of noise measurements
contained in the quantity S =

∑

n(xn− x̄)2. The sum contains N residuals
squared, but there are only (N−1) effective noise measurements because the
determination of one parameter µ from the data causes one dimension of noise
to be gobbled up in unavoidable overfitting. In the terminology of classical
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statistics, the Bayesian’s best guess for σ sets χ2 (the measure of deviance
defined by χ2 ≡ ∑

n(xn − µ̂)2/σ̂2) equal to the number of degrees of freedom,
N − 1.

Figure 24.1d shows the posterior probability of σ, which is proportional
to the marginal likelihood. This may be contrasted with the posterior prob-
ability of σ with µ fixed to its most probable value, x̄=1, which is shown in
figure 24.1c and d.

The final inference we might wish to make is ‘given the data, what is µ?’

. Exercise 24.2.[3 ] Marginalize over σ and obtain the posterior marginal distri-
bution of µ, which is a Student-t distribution:

P (µ |D) ∝ 1/
(

N(µ − x̄)2 + S
)N/2

. (24.15)

Further reading

A bible of exact marginalization is Bretthorst’s (1988) book on Bayesian spec-
trum analysis and parameter estimation.

�
24.2 Exercises

. Exercise 24.3.[3 ] [This exercise requires macho integration capabilities.] Give
a Bayesian solution to exercise 22.15 (p.309), where seven scientists of
varying capabilities have measured µ with personal noise levels σn,

-30 -20 -10 0 10 20

A B C D-G

and we are interested in inferring µ. Let the prior on each σn be a
broad prior, for example a gamma distribution with parameters (s, c) =
(10, 0.1). Find the posterior distribution of µ. Plot it, and explore its
properties for a variety of data sets such as the one given, and the data
set {xn} = {13.01, 7.39}.
[Hint: first find the posterior distribution of σn given µ and xn,
P (σn |xn, µ). Note that the normalizing constant for this inference is
P (xn |µ). Marginalize over σn to find this normalizing constant, then
use Bayes’ theorem a second time to find P (µ | {xn}).]

�
24.3 Solutions

Solution to exercise 24.1 (p.321). 1. The data points are distributed with mean
squared deviation σ2 about the true mean. 2. The sample mean is unlikely
to exactly equal the true mean. 3. The sample mean is the value of µ that
minimizes the sum squared deviation of the data points from µ. Any other
value of µ (in particular, the true value of µ) will have a larger value of the
sum-squared deviation that µ = x̄.

So the expected mean squared deviation from the sample mean is neces-
sarily smaller than the mean squared deviation σ2 about the true mean.


