
Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

25

Exact Marginalization in Trellises

In this chapter we will discuss a few exact methods that are used in proba-
bilistic modelling. As an example we will discuss the task of decoding a linear
error-correcting code. We will see that inferences can be conducted most effi-
ciently by message-passing algorithms, which take advantage of the graphical
structure of the problem to avoid unnecessary duplication of computations
(see Chapter 16).

�
25.1 Decoding problems

A codeword t is selected from a linear (N,K) code C, and it is transmitted
over a noisy channel; the received signal is y. In this chapter we will assume
that the channel is a memoryless channel such as a Gaussian channel. Given
an assumed channel model P (y | t), there are two decoding problems.

The codeword decoding problem is the task of inferring which codeword
t was transmitted given the received signal.

The bitwise decoding problem is the task of inferring for each transmit-
ted bit tn how likely it is that that bit was a one rather than a zero.

As a concrete example, take the (7, 4) Hamming code. In Chapter 1, we
discussed the codeword decoding problem for that code, assuming a binary
symmetric channel. We didn’t discuss the bitwise decoding problem and we
didn’t discuss how to handle more general channel models such as a Gaussian
channel.

Solving the codeword decoding problem

By Bayes’ theorem, the posterior probability of the codeword t is

P (t |y) =
P (y | t)P (t)

P (y)
. (25.1)

Likelihood function. The first factor in the numerator, P (y | t), is the likeli-

hood of the codeword, which, for any memoryless channel, is a separable
function,

P (y | t) =

N
∏

n=1

P (yn | tn). (25.2)

For example, if the channel is a Gaussian channel with transmissions ±x
and additive noise of standard deviation σ, then the probability density

324

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

25.1: Decoding problems 325

of the received signal yn in the two cases tn = 0, 1 is

P (yn | tn =1) =
1√

2πσ2
exp

(

−(yn − x)2

2σ2

)

(25.3)

P (yn | tn =0) =
1√

2πσ2
exp

(

−(yn + x)2

2σ2

)

. (25.4)

From the point of view of decoding, all that matters is the likelihood

ratio, which for the case of the Gaussian channel is

P (yn | tn =1)

P (yn | tn =0)
= exp

(

2xyn

σ2

)

. (25.5)

Exercise 25.1.[2] Show that from the point of view of decoding, a Gaussian
channel is equivalent to a time-varying binary symmetric channel with
a known noise level fn which depends on n.

Prior. The second factor in the numerator is the prior probability of the
codeword, P (t), which is usually assumed to be uniform over all valid
codewords.

The denominator in (25.1) is the normalizing constant

P (y) =
∑

t

P (y | t)P (t). (25.6)

The complete solution to the codeword decoding problem is a list of all
codewords and their probabilities as given by equation (25.1). Since the num-
ber of codewords in a linear code, 2K , is often very large, and since we are not
interested in knowing the detailed probabilities of all the codewords, we often
restrict attention to a simplified version of the codeword decoding problem.

The MAP codeword decoding problem is the task of identifying the

most probable codeword t given the received signal.

If the prior probability over codewords is uniform then this task is iden-
tical to the problem of maximum likelihood decoding, that is, identifying
the codeword that maximizes P (y | t).

Example: In Chapter 1, for the (7, 4) Hamming code and a binary symmetric
channel we discussed a method for deducing the most probable codeword from
the syndrome of the received signal, thus solving the MAP codeword decoding
problem for that case. We would like a more general solution.

The MAP codeword decoding problem can be solved in exponential time
(of order 2K) by searching through all codewords for the one that maximizes
P (y | t)P (t). But we are interested in methods that are more efficient than
this. In section 25.3, we will discuss an exact method known as the min–sum

algorithm which may be able to solve the codeword decoding problem more
efficiently; how much more efficiently depends on the properties of the code.

It is worth emphasizing that MAP codeword decoding for a general lin-
ear code is known to be NP-complete (which means in layman’s terms that
MAP codeword decoding has a complexity that scales exponentially with the
blocklength, unless there is a revolution in computer science). So restrict-
ing attention to the MAP decoding problem hasn’t necessarily made the task
much less challenging; it simply makes the answer briefer to report.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

326 25 — Exact Marginalization in Trellises

Solving the bitwise decoding problem

Formally, the exact solution of the bitwise decoding problem is obtained from
equation (25.1) by marginalizing over the other bits.

P (tn |y) =
∑

{tn′ :n′ 6=n}

P (t |y). (25.7)

We can also write this marginal with the aid of a truth function � [S] that is
one if the proposition S is true and zero otherwise.

P (tn =1 |y) =
∑

t

P (t |y) � [tn =1] (25.8)

P (tn =0 |y) =
∑

t

P (t |y) � [tn =0]. (25.9)

Computing these marginal probabilities by an explicit sum over all codewords
t takes exponential time. But, for certain codes, the bitwise decoding problem
can be solved much more efficiently using the forward–backward algorithm.
We will describe this algorithm, which is an example of the sum–product

algorithm, in a moment. Both the min–sum algorithm and the sum–product
algorithm have widespread importance, and have been invented many times
in many fields.

�
25.2 Codes and trellises

In Chapters 1 and 11, we represented linear (N,K) codes in terms of their
generator matrices and their parity-check matrices. In the case of a systematic

block code, the first K transmitted bits in each block of size N are the source
bits, and the remaining M = N −K bits are the parity-check bits. This means
that the generator matrix of the code can be written

GT =

[

IK

P

]

, (25.10)

and the parity-check matrix can be written

H =
[

P IM

]

, (25.11)

where P is an M × K matrix.
In this section we will study another representation of a linear code called a

trellis. The codes that these trellises represent will not in general be systematic
codes, but they can be mapped onto systematic codes if desired by a reordering
of the bits in a block.

(a)

Repetition code R3

(b)

Simple parity code P3

(c)

(7, 4) Hamming code

Figure 25.1. Examples of trellises.
Each edge in a trellis is labelled
by a zero (shown by a square) or
a one (shown by a cross).

Definition of a trellis

Our definition will be quite narrow. For a more comprehensive view of trellises,
the reader should consult Kschischang and Sorokine (1995).

A trellis is a graph consisting of nodes (also known as states or vertices) and
edges. The nodes are grouped into vertical slices called times, and the
times are ordered such that each edge connects a node in one time to
a node in a neighbouring time. Every edge is labelled with a symbol.
The leftmost and rightmost states contain only one node. Apart from
these two extreme nodes, all nodes in the trellis have at least one edge
connecting leftwards and at least one connecting rightwards.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

25.3: Solving the decoding problems on a trellis 327

A trellis with N +1 times defines a code of blocklength N as follows: a
codeword is obtained by taking a path that crosses the trellis from left to right
and reading out the symbols on the edges that are traversed. Each valid path
through the trellis defines a codeword. We will number the leftmost time ‘time
0’ and the rightmost ‘time N ’. We will number the leftmost state ‘state 0’
and the rightmost ‘state I’, where I is the total number of states (vertices) in
the trellis. The nth bit of the codeword is emitted as we move from time n−1
to time n.

The width of the trellis at a given time is the number of nodes in that
time. The maximal width of a trellis is what it sounds like.

A trellis is called a linear trellis if the code it defines is a linear code. We will
solely be concerned with linear trellises from now on, as nonlinear trellises are
much more complex beasts. For brevity, we will only discuss binary trellises,
that is, trellises whose edges are labelled with zeroes and ones. It is not hard
to generalize the methods that follow to q-ary trellises.

Figures 25.1(a–c) show the trellises corresponding to the repetition code
R3 which has (N,K) = (3, 1); the parity code P3 with (N,K) = (3, 2); and
the (7, 4) Hamming code.

. Exercise 25.2.[2] Confirm that the sixteen codewords listed in table 1.14 are
generated by the trellis shown in figure 25.1c.

Observations about linear trellises

For any linear code the minimal trellis is the one that has the smallest number
of nodes. In a minimal trellis, each node has at most two edges entering it and
at most two edges leaving it. All nodes in a time have the same left degree as
each other and they have the same right degree as each other. The width is
always a power of two.

A minimal trellis for a linear (N,K) code cannot have a width greater than
2K since every node has at least one valid codeword through it, and there are
only 2K codewords. Furthermore, if we define M = N − K, the minimal
trellis’s width is everywhere less than 2M . This will be proved in section 25.4.

Notice that for the linear trellises in figure 25.1, all of which are minimal
trellises, K is the number of times a binary branch point is encountered as the
trellis is traversed from left to right or from right to left.

We will discuss the construction of trellises more in section 25.4. But we
now know enough to discuss the decoding problem.

�
25.3 Solving the decoding problems on a trellis

We can view the trellis of a linear code as giving a causal description of the
probabilistic process that gives rise to a codeword, with time flowing from left
to right. Each time a divergence is encountered, a random source (the source
of information bits for communication) determines which way we go.

At the receiving end, we receive a noisy version of the sequence of edge-
labels, and wish to infer which path was taken, or to be precise, (a) we want
to identify the most probable path in order to solve the codeword decoding
problem; and (b) we want to find the probability that the transmitted symbol
at time n was a zero or a one, to solve the bitwise decoding problem.

Example 25.3. Consider the case of a single transmission from the Hamming
(7, 4) trellis shown in figure 25.1c.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

328 25 — Exact Marginalization in Trellises

t Likelihood Posterior probability

0000000 0.0275562 0.25
0001011 0.0001458 0.0013
0010111 0.0013122 0.012
0011100 0.0030618 0.027
0100110 0.0002268 0.0020
0101101 0.0000972 0.0009
0110001 0.0708588 0.63
0111010 0.0020412 0.018
1000101 0.0001458 0.0013
1001110 0.0000042 0.0000
1010010 0.0030618 0.027
1011001 0.0013122 0.012
1100011 0.0000972 0.0009
1101000 0.0002268 0.0020
1110100 0.0020412 0.018
1111111 0.0000108 0.0001

Figure 25.2. Posterior probabilities
over the sixteen codewords when
the received vector y has
normalized likelihoods
(0.1, 0.4, 0.9, 0.1, 0.1, 0.1, 0.3).

Let the normalized likelihoods be: (0.1, 0.4, 0.9, 0.1, 0.1, 0.1, 0.3). That is,
the ratios of the likelihoods are

P (y1 |x1 =1)

P (y1 |x1 =0)
=

0.1

0.9
,

P (y2 |x2 =1)

P (y2 |x2 =0)
=

0.4

0.6
, etc. (25.12)

How should this received signal be decoded?

1. If we threshold the likelihoods at 0.5 to turn the signal into a bi-
nary received vector, we have r = (0, 0, 1, 0, 0, 0, 0), which decodes,
using the decoder for the binary symmetric channel (Chapter 1), into
t̂ = (0, 0, 0, 0, 0, 0, 0).

This is not the optimal decoding procedure. Optimal inferences are
always obtained by using Bayes’ theorem.

2. We can find the posterior probability over codewords by explicit enu-
meration of all sixteen codewords. This posterior distribution is shown
in figure 25.2. Of course, we aren’t really interested in such brute-force
solutions, and the aim of this chapter is to understand algorithms for
getting the same information out in less than 2K computer time.

Examining the posterior probabilities, we notice that the most probable
codeword is actually the string t = 0110001. This is more than twice as
probable as the answer found by thresholding, 0000000.

Using the posterior probabilities shown in figure 25.2, we can also com-
pute the posterior marginal distributions of each of the bits. The result
is shown in figure 25.3. Notice that bits 1, 4, 5 and 6 are all quite con-
fidently inferred to be zero. The strengths of the posterior probabilities
for bits 2, 3, and 7 are not so great. 2

In the above example, the MAP codeword is in agreement with the bitwise
decoding that is obtained by selecting the most probable state for each bit
using the posterior marginal distributions. But this is not always the case, as
the following exercise shows.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

25.3: Solving the decoding problems on a trellis 329

n Likelihood Posterior marginals
P (yn | tn =1) P (yn | tn =0) P (tn =1 |y) P (tn =0 |y)

1 0.1 0.9 0.061 0.939
2 0.4 0.6 0.674 0.326
3 0.9 0.1 0.746 0.254
4 0.1 0.9 0.061 0.939
5 0.1 0.9 0.061 0.939
6 0.1 0.9 0.061 0.939
7 0.3 0.7 0.659 0.341

Figure 25.3. Marginal posterior
probabilities for the 7 bits under
the posterior distribution of
figure 25.2.

Exercise 25.4.[2, p.333] Find the most probable codeword in the case where
the normalized likelihood is (0.2, 0.2, 0.9, 0.2, 0.2, 0.2, 0.2). Also find or
estimate the marginal posterior probability for each of the seven bits,
and give the bit-by-bit decoding.

[Hint: concentrate on the few codewords that have the largest probabil-
ity.]

We now discuss how to use message passing on a code’s trellis to solve the
decoding problems.

The min–sum algorithm

The MAP codeword decoding problem can be solved using the min–sum al-
gorithm that was introduced in section 16.3. Each codeword of the code
corresponds to a path across the trellis. Just as the cost of a journey is the
sum of the costs of its constituent steps, the log likelihood of a codeword is
the sum of the bitwise log likelihoods. By convention, we flip the sign of the
log likelihood (which we would like to maximize) and talk in terms of a cost,
which we would like to minimize.

We associate with each edge a cost −log P (yn | tn), where tn is the trans-
mitted bit associated with that edge, and yn is the received symbol. The
min–sum algorithm presented in section 16.3 can then identify the most prob-
able codeword in a number of computer operations equal to the number of
edges in the trellis. This algorithm is also known as the Viterbi algorithm
(Viterbi, 1967).

The sum–product algorithm

To solve the bitwise decoding problem, we can make a small modification to
the min–sum algorithm, so that the messages passed through the trellis define
‘the probability of the data up to the current point’ instead of ‘the cost of the
best route to this point’. We replace the costs on the edges, −log P (yn | tn), by
the likelihoods themselves, P (yn | tn). We replace the min and sum operations
of the min–sum algorithm by a sum and product respectively.

Let i run over nodes/states, i = 0 be the label for the start state, P(i)
denote the set of states that are parents of state i, and wij be the likelihood
associated with the edge from node j to node i. We define the forward-pass
messages αi by

α0 = 1

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

330 25 — Exact Marginalization in Trellises

αi =
∑

j∈P(i)

wijαj. (25.13)

These messages can be computed sequentially from left to right.

. Exercise 25.5.[2] Show that for a node i whose time-coordinate is n, αi is
proportional to the joint probability that the codeword’s path passed
through node i and that the first n received symbols were y1, . . . , yn.

The message αI computed at the end node of the trellis is proportional to the
marginal probability of the data.

. Exercise 25.6.[2] What is the constant of proportionality? [Answer: 2K]

We define a second set of backward-pass messages βi in a similar manner.
Let node I be the end node.

βI = 1

βj =
∑

i:j∈P(i)

wijβi. (25.14)

These messages can be computed sequentially in a backward pass from right
to left.

. Exercise 25.7.[2] Show that for a node i whose time-coordinate is n, βi is
proportional to the conditional probability, given that the codeword’s
path passed through node i, that the subsequent received symbols were
yn+1 . . . yN .

Finally, to find the probability that the nth bit was a 1 or 0, we do two
summations of products of the forward and backward messages. Let i run over
nodes at time n and j run over nodes at time n − 1, and let tij be the value
of tn associated with the trellis edge from node j to node i. For each value of
t = 0/1, we compute

r(t)
n =

∑

i,j: j∈P(i), tij=t

αjwijβi. (25.15)

Then the posterior probability that tn was t = 0/1 is

P (tn = t |y) =
1

Z
r(t)
n , (25.16)

where the normalizing constant Z = r
(0)
n + r

(1)
n should be identical to the final

forward message αI that was computed earlier.

Exercise 25.8.[2] Confirm that the above sum–product algorithm does com-
pute P (tn = t |y).

Other names for the sum–product algorithm presented here are ‘the forward–
backward algorithm’, ‘the BCJR algorithm’, and ‘belief propagation’.

. Exercise 25.9.[2, p.333] A codeword of the simple parity code P3 is transmitted,
and the received signal y has associated likelihoods shown in table 25.4.

n P (yn | tn)
tn =0 tn =1

1 1/4 1/2

2 1/2 1/4

3 1/8 1/2

Table 25.4. Bitwise likelihoods for
a codeword of P3.

Use the min–sum algorithm and the sum–product algorithm in the trellis
(figure 25.1) to solve the MAP codeword decoding problem and the
bitwise decoding problem. Confirm your answers by enumeration of
all codewords (000, 011, 110, 101). [Hint: use logs to base 2 and do
the min–sum computations by hand. When working the sum–product
algorithm by hand, you may find it helpful to use three colours of pen,
one for the αs, one for the ws, and one for the βs.]

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

25.4: More on trellises 331

�
25.4 More on trellises

We now discuss various ways of making the trellis of a code. You may safely
jump over this section.

The span of a codeword is the set of bits contained between the first bit in
the codeword that is non-zero, and the last bit that is non-zero, inclusive. We
can indicate the span of a codeword by a binary vector as shown in table 25.5.

Codeword 0000000 0001011 0100110 1100011 0101101

Span 0000000 0001111 0111110 1111111 0111111

Table 25.5. Some codewords and
their spans.

A generator matrix is in trellis-oriented form if the spans of the rows of the
generator matrix all start in different columns and the spans all end in different
columns.

How to make a trellis from a generator matrix

First, put the generator matrix into trellis-oriented form by row-manipulations
similar to Gaussian elimination. For example, our (7, 4) Hamming code can
be generated by

G =

1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 1 1 1
0 0 0 1 0 1 1

(25.17)

but this matrix is not in trellis-oriented form – for example, rows 1, 3 and 4
all have spans that end in the same column. By subtracting lower rows from
upper rows, we can obtain an equivalent generator matrix (that is, one that
generates the same set of codewords) as follows:

G =

1 1 0 1 0 0 0
0 1 0 0 1 1 0
0 0 1 1 1 0 0
0 0 0 1 0 1 1

. (25.18)

Now, each row of the generator matrix can be thought of as defining an
(N, 1) subcode of the (N,K) code, that is, in this case, a code with two
codewords of length N = 7. For the first row, the code consists of the two
codewords 1101000 and 0000000. The subcode defined by the second row
consists of 0100110 and 0000000. It is easy to construct the minimal trellises
of these subcodes; they are shown in the left column of figure 25.6.

We build the trellis incrementally as shown in figure 25.6. We start with
the trellis corresponding to the subcode given by the first row of the generator
matrix. Then we add in one subcode at a time. The vertices within the span
of the new subcode are all duplicated. The edge symbols in the original trellis
are left unchanged and the edge symbols in the second part of the trellis are
flipped wherever the new subcode has a 1 and otherwise left alone.

Another (7, 4) Hamming code can be generated by

G =

1 1 1 0 0 0 0
0 1 1 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 1 1 1

. (25.19)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

332 25 — Exact Marginalization in Trellises

+

=

+

=

+

=

Figure 25.6. Trellises for four
subcodes of the (7, 4) Hamming
code (left column), and the
sequence of trellises that are made
when constructing the trellis for
the (7, 4) Hamming code (right
column).
Each edge in a trellis is labelled
by a zero (shown by a square) or
a one (shown by a cross).

The (7, 4) Hamming code generated by this matrix differs by a permutation
of its bits from the code generated by the systematic matrix used in Chapter
1 and above. The parity-check matrix corresponding to this permutation is:

H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 . (25.20)

The trellis obtained from the permuted matrix G given in equation (25.19) is
shown in figure 25.7a. Notice that the number of nodes in this trellis is smaller
than the number of nodes in the previous trellis for the Hamming (7, 4) code
in figure 25.1c. We thus observe that rearranging the order of the codeword

bits can sometimes lead to smaller, simpler trellises.

(a)

(b)

Figure 25.7. Trellises for the
permuted (7, 4) Hamming code
generated from (a) the generator
matrix by the method of
figure 25.6; (b) the parity-check
matrix by the method on page
332.
Each edge in a trellis is labelled
by a zero (shown by a square) or
a one (shown by a cross).

Trellises from parity-check matrices

Another way of viewing the trellis is in terms of the syndrome. The syndrome
of a vector r is defined to be Hr, where H is the parity-check matrix. A vector
is only a codeword if its syndrome is zero. As we generate a codeword we can
describe the current state by the partial syndrome, that is, the product of
H with the codeword bits thus far generated. Each state in the trellis is a
partial syndrome at one time coordinate. The starting and ending states are
both constrained to be the zero syndrome. Each node in a state represents a
different possible value for the partial syndrome. Since H is an M ×N matrix,
where M = N − K, the syndrome is at most an M -bit vector. So we need at
most 2M nodes in each state. We can construct the trellis of a code from its
parity-check matrix by walking from each end, generating two trees of possible
syndrome sequences. The intersection of these two trees defines the trellis of
the code.

In the pictures we obtain from this construction, we can let the vertical
coordinate represent the syndrome. Then any horizontal edge is necessarily
associated with a zero bit (since only a non-zero bit changes the syndrome)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

25.5: Solutions 333

and any non-horizontal edge is associated with a one bit. (Thus in this rep-
resentation we no longer need to label the edges in the trellis.) Figure 25.7b
shows the trellis corresponding to the parity-check matrix of equation (25.20).

�
25.5 Solutions

t Likelihood Posterior probability

0000000 0.026 0.3006
0001011 0.00041 0.0047
0010111 0.0037 0.0423
0011100 0.015 0.1691
0100110 0.00041 0.0047
0101101 0.00010 0.0012
0110001 0.015 0.1691
0111010 0.0037 0.0423
1000101 0.00041 0.0047
1001110 0.00010 0.0012
1010010 0.015 0.1691
1011001 0.0037 0.0423
1100011 0.00010 0.0012
1101000 0.00041 0.0047
1110100 0.0037 0.0423
1111111 0.000058 0.0007

Table 25.8. The posterior
probability over codewords for
exercise 25.4.

Solution to exercise 25.4 (p.329). The posterior probability over codewords is
shown in table 25.8. The most probable codeword is 0000000. The marginal
posterior probabilities of all seven bits are:

n Likelihood Posterior marginals
P (yn | tn =1) P (yn | tn =0) P (tn =1 |y) P (tn =0 |y)

1 0.2 0.8 0.266 0.734
2 0.2 0.8 0.266 0.734
3 0.9 0.1 0.677 0.323
4 0.2 0.8 0.266 0.734
5 0.2 0.8 0.266 0.734
6 0.2 0.8 0.266 0.734
7 0.2 0.8 0.266 0.734

So the bitwise decoding is 0010000, which is not actually a codeword.

Solution to exercise 25.9 (p.330). The MAP codeword is 101, and its like-
lihood is 1/8. The normalizing constant of the sum–product algorithm is
Z = αI = 3/16. The intermediate αi are (from left to right) 1/2, 1/4, 5/16, 4/16;
the intermediate βi are (from right to left), 1/2, 1/8, 9/32, 3/16. The bitwise
decoding is: P (t1 =1 |y) = 3/4; P (t1 =1 |y) = 1/4; P (t1 =1 |y) = 5/6. The
codewords’ probabilities are 1/12, 2/12, 1/12, 8/12 for 000, 011, 110, 101.

