
Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

26

Exact Marginalization in Graphs

We now take a more general view of the tasks of inference and marginalization.
Before reading this chapter, you should read about message passing in Chapter
16.

�
26.1 The general problem

Assume that a function P ∗ of a set of N variables x ≡ {xn}
N
n=1 is defined as

a product of M factors as follows:

P ∗(x) =

M
∏

m=1

fm(xm). (26.1)

Each of the factors fm(xm) is a function of a subset xm of the variables that
make up x. If P ∗ is a positive function then we may be interested in a second
normalized function,

P (x) ≡ 1
Z
P ∗(x) = 1

Z

M
∏

m=1

fm(xm), (26.2)

where the normalizing constant Z is defined by

Z =
∑

x

M
∏

m=1

fm(xm). (26.3)

As an example of the notation we’ve just introduced, here’s a function of
three binary variables x1, x2, x3 defined by the five factors:

f1(x1) =

{

0.1 x1 =0
0.9 x1 =1

f2(x2) =

{

0.1 x2 =0
0.9 x2 =1

f3(x3) =

{

0.9 x3 =0
0.1 x3 =1

f4(x1, x2) =

{

1 (x1, x2)=(0, 0) or (1, 1)
0 (x1, x2)=(1, 0) or (0, 1)

f5(x2, x3) =

{

1 (x2, x3)=(0, 0) or (1, 1)
0 (x2, x3)=(1, 0) or (0, 1)

P ∗(x) = f1(x1)f2(x2)f3(x3)f4(x1, x2)f5(x2, x3)

P (x) = 1
Z
f1(x1)f2(x2)f3(x3)f4(x1, x2)f5(x2, x3).

(26.4)

The five subsets of {x1, x2, x3} denoted by xm in the general function (26.1)
are here x1 = {x1}, x2 = {x2}, x3 = {x3}, x4 = {x1, x2}, and x5 = {x2, x3}.

334

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

26.1: The general problem 335

The function P (x), by the way, may be recognized as the posterior prob-
ability distribution of the three transmitted bits in a repetition code (section
1.2) when the received signal is r = (1, 1, 0) and the channel is a binary sym-
metric channel with flip probability 0.1. The factors f4 and f5 respectively
enforce the constraints that x1 and x2 must be identical and that x2 and x3

must be identical. The factors f1, f2, f3 are the likelihood functions con-
tributed by each component of r.

A function of the factored form (26.1) can be depicted by a factor graph, in
which the variables are depicted by circular nodes and the factors are depicted
by square nodes. An edge is put between variable node n and factor node m
if the function fm(xm) has any dependence on variable xn. The factor graph
for the example function (26.4) is shown in figure 26.1.

@@��@@��

x1 x2 x3
g g g

f1 f2 f3 f4 f5

Figure 26.1. The factor graph
associated with the function
P ∗(x) (26.4).

The normalization problem

The first task to be solved is to compute the normalizing constant Z.

The marginalization problems

The second task to be solved is to compute the marginal function of any
variable xn, defined by

Zn(xn) =
∑

{x
n

′}, n′ 6=n

P ∗(x). (26.5)

For example, if f is a function of three variables then the marginal for
n = 1 is defined by

Z1(x1) =
∑

x2,x3

f(x1, x2, x3). (26.6)

This type of summation, over ‘all the xn′ except for xn’ is so important that it
can be useful to have a special notation for it – the ‘not-sum’ or ‘summary’.

The third task to be solved is to compute the normalized marginal of any
variable xn, defined by

Pn(xn) ≡
∑

{x
n

′}, n′ 6=n

P (x). (26.7)

[We include the suffix ‘n’ in Pn(xn), departing from our normal practice in the
rest of the book, where we would omit it.]

. Exercise 26.1.
[1] Show that the normalized marginal is related to the marginal

Zn(xn) by

Pn(xn) =
Zn(xn)

Z
. (26.8)

We might also be interested in marginals over a subset of the variables,
such as

Z12(x1, x2) ≡
∑

x3

P ∗(x1, x2, x3). (26.9)

All these tasks are intractable in general. Even if every factor is a function
of only three variables, the cost of computing exact solutions for Z and for
the marginals is believed in general to grow exponentially with the number of
variables N .

For certain functions P ∗, however, the marginals can be computed effi-
ciently by exploiting the factorization of P ∗. The idea of how this efficiency

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

336 26 — Exact Marginalization in Graphs

arises is well illustrated by the message-passing examples of Chapter 16. The
sum–product algorithm that we now review is a generalization of message-
passing rule-set B (p.242). As was the case there, the sum–product algorithm
is only valid if the graph is tree-like.

�
26.2 The sum–product algorithm

Notation

We identify the set of variables that the mth factor depends on, xm, by the set
of their indices N (m). For our example function (26.4), the sets are N (1) =
{1} (since f1 is a function of x1 alone), N (2) = {2}, N (3) = {3}, N (4) =
{1, 2}, and N (5) = {2, 3}. Similarly we define the set of factors in which
variable n participates, by M(n). We denote a set N (m) with variable n

excluded by N (m)\n. We introduce the shorthand xm\n or xm\n to denote
the set of variables in xm with xn excluded, i.e.,

xm\n ≡ {xn′ : n′ ∈ N (m)\n}. (26.10)

The sum–product algorithm will involve messages of two types passing
along the edges in the factor graph: messages qn→m from variable nodes to
factor nodes, and messages rm→n from factor nodes to variable nodes. A
message (of either type, q or r) that is sent along an edge connecting factor
fm to variable xn is always a function of the variable xn.

Here are the two rules for the updating of the two sets of messages.

From variable to factor:

qn→m(xn) =
∏

m′∈M(n)\m

rm′→n(xn). (26.11)

From factor to variable:

rm→n(xn) =
∑

xm\n



fm(xm)
∏

n′∈N (m)\n

qn′→m(xn′)



 . (26.12)

How these rules apply to leaves in the factor graph

A node that has only one edge connecting it to another node is called a leaf

fm

xn

rm→n(xn) = fm(xn)

Figure 26.2. A factor node that is
a leaf node perpetually sends the
message rm→n(xn) = fm(xn) to
its one neighbour xn.

node.
Some factor nodes in the graph may be connected to only one vari-

able node, in which case the set N (m)\n of variables appearing in the fac-
tor message update (26.12) is an empty set, and the product of functions
∏

n′∈N (m)\n qn′→m(xn′) is the empty product, whose value is 1. Such a fac-
tor node therefore always broadcasts to its one neighbour xn the message
rm→n(xn) = fm(xn).

Similarly, there may be variable nodes that are connected to only one
factor node, so the set M(n)\m in (26.11) is empty. These nodes perpetually
broadcast the message qn→m(xn) = 1.

fm

xn

qn→m(xn) = 1

Figure 26.3. A variable node that
is a leaf node perpetually sends
the message qn→m(xn) = 1.

Starting and finishing, method 1

The algorithm can be initialized in two ways. If the graph is tree-like then
it must have nodes that are leaves. These leaf nodes can broadcast their

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

26.2: The sum–product algorithm 337

messages to their respective neighbours from the start.

For all leaf variable nodes n: qn→m(xn) = 1 (26.13)

For all leaf factor nodes m: rm→n(xn) = fm(xn). (26.14)

We can then adopt the procedure used in Chapter 16’s message-passing rule-
set B (p.242): a message is created in accordance with the rules (26.11, 26.12)
only if all the messages on which it depends are present. For example, in

@@��@@��

x1 x2 x3
g g g

f1 f2 f3 f4 f5

Figure 26.4. Our model factor
graph for the function P ∗(x)
(26.4).

figure 26.4, the message from x1 to f1 will be sent only when the message
from f4 to x1 has been received; and the message from x2 to f2, q2→2, can be
sent only when the messages r4→2 and r5→2 have both been received.

Messages will thus flow through the tree, one in each direction along every
edge, and after a number of steps equal to the diameter of the graph, every
message will have been created.

The answers we require can then be read out. The marginal function of
xn is obtained by multiplying all the incoming messages at that node.

Zn(xn) =
∏

m∈M(n)

rm→n(xn). (26.15)

The normalizing constant Z can be obtained by summing any marginal
function, Z =

∑

xn

Zn(xn), and the normalized marginals obtained from

Pn(xn) =
Zn(xn)

Z
. (26.16)

. Exercise 26.2.
[2] Apply the sum–product algorithm to the function defined in

equation (26.4) and figure 26.1. Check that the normalized marginals
are consistent with what you know about the repetition code R3.

Exercise 26.3.
[3] Prove that the sum–product algorithm correctly computes

the marginal functions Zn(xn) if the graph is tree-like.

Exercise 26.4.
[3] Describe how to use the messages computed by the sum–

product algorithm to obtain more complicated marginal functions in a
tree-like graph, for example Z1,2(x1, x2), for two variables x1 and x2 that
are connected to one common factor node.

Starting and finishing, method 2

Alternatively, the algorithm can be initialized by setting all the initial mes-
sages from variables to 1:

for all n, m: qn→m(xn) = 1, (26.17)

then proceeding with the factor message update rule (26.12), alternating with
the variable message update rule (26.11). Compared with method 1, this lazy
initialization method leads to a load of wasted computations, whose results
are gradually flushed out by the correct answers computed by method 1.

After a number of iterations equal to the diameter of the factor graph,
the algorithm will converge to a set of messages satisfying the sum–product
relationships (26.11, 26.12).

Exercise 26.5.
[2] Apply this second version of the sum–product algorithm to

the function defined in equation (26.4) and figure 26.1.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

338 26 — Exact Marginalization in Graphs

The reason for introducing this lazy method is that (unlike method 1) it can
be applied to graphs that are not tree-like. When the sum–product algorithm
is run on a graph with cycles, the algorithm does not necessarily converge,
and certainly does not in general compute the correct marginal functions; but
it is nevertheless an algorithm of great practical importance, especially in the
decoding of sparse-graph codes.

Sum–product algorithm with on-the-fly normalization

If we are interested in only the normalized marginals, then another version
of the sum–product algorithm may be useful. The factor-to-variable messages
rm→n are computed in just the same way (26.12), but the variable-to-factor
messages are normalized thus:

qn→m(xn) = αnm

∏

m′∈M(n)\m

rm′→n(xn) (26.18)

where αnm is a scalar chosen such that
∑

xn

qn→m(xn) = 1. (26.19)

Exercise 26.6.
[2] Apply this normalized version of the sum–product algorithm

to the function defined in equation (26.4) and figure 26.1.

A factorization view of the sum–product algorithm

One way to view the sum–product algorithm is that it reexpresses the original
factored function, the product ofM factors P ∗(x) =

∏M
m=1 fm(xm), as another

factored function which is the product of M +N factors,

P ∗(x) =
M
∏

m=1

φm(xm)
N
∏

n=1

ψn(xn). (26.20)

Each factor φm is associated with a factor node m, and each factor ψn(xn) is
associated with a variable node. Initially φm(xm) = fm(xm) and ψn(xn) = 1.

Each time a factor-to-variable message rm→n(xn) is sent, the factorization
is updated thus:

ψn(xn) =
∏

m∈M(n)

rm→n(xn) (26.21)

φm(xm) =
f(xm)

∏

n∈N (m) rm→n(xn)
. (26.22)

And each message can be computed in terms of φ and ψ using

rm→n(xn) =
∑

xm\n



φm(xm)
∏

n′∈N (m)

ψn′(xn′)



 (26.23)

which differs from the assignment (26.12) in that the product is over all n′ ∈
N (m).

Exercise 26.7.
[2] Confirm that the update rules (26.21–26.23) are equivalent

to the sum–product rules (26.11–26.12). So ψn(xn) eventually becomes
the marginal Zn(xn).

This factorization viewpoint applies whether or not the graph is tree-like.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

26.3: The min–sum algorithm 339

Computational tricks

On-the-fly normalization is a good idea from a computational point of view
because if P ∗ is a product of many factors, its values are likely to be very large
or very small.

Another useful computational trick involves passing the logarithms of the
messages q and r instead of q and r themselves; the computations of the
products in the algorithm (26.11, 26.12) are then replaced by simpler additions.
The summations in (26.12) of course become more difficult: to carry them out
and return the logarithm, we need to compute softmax functions like

l = ln(el1 + el2 + el3). (26.24)

But this computation can be done efficiently using look-up tables along with
the observation that the value of the answer l is typically just a little larger
than maxi li. If we store in look-up tables values of the function

ln(1 + eδ) (26.25)

(for negative δ) then l can be computed exactly in a number of look-ups and
additions scaling as the number of terms in the sum. If look-ups and sorting
operations are cheaper than exp() then this approach costs less than the
direct evaluation (26.24). The number of operations can be further reduced
by omitting negligible contributions from the smallest of the {li}.

A third computational trick applicable to certain error-correcting codes is
to pass not the messages but the Fourier transforms of the messages. This
again makes the computations of the factor-to-variable messages quicker. A
simple example of this Fourier transform trick is given in Chapter 47 at equa-
tion (47.9).

�
26.3 The min–sum algorithm

The sum–product algorithm solves the problem of finding the marginal func-
tion of a given product P ∗(x). This is analogous to solving the bitwise decod-
ing problem of section 25.1. And just as there were other decoding problems
(for example, the codeword decoding problem), we can define other tasks
involving P ∗(x) that can be solved by modifications of the sum–product algo-
rithm. For example, consider this task, analogous to the codeword decoding
problem:

The maximization problem. Find the setting of x that maximizes the
product P ∗(x).

This problem can be solved by replacing the two operations add and mul-

tiply everywhere they appear in the sum–product algorithm by another pair
of operations that satisfy the distributive law, namely max and multiply. If
we replace summation (+,

∑

) by maximization, we notice that the quantity
formerly known as the normalizing constant,

Z =
∑

x

P ∗(x), (26.26)

becomes maxx P
∗(x).

Thus the sum–product algorithm can be turned into a max–product algo-
rithm that computes maxx P

∗(x), and from which the solution of the max-
imization problem can be deduced. Each ‘marginal’ Zn(xn) then lists the
maximum value that P ∗(x) can attain for each value of xn.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

340 26 — Exact Marginalization in Graphs

In practice, the max–product algorithm is most often carried out in the
negative log likelihood domain, where max and product become min and sum.
The min–sum algorithm is also known as the Viterbi algorithm.

�
26.4 The junction tree algorithm

What should one do when the factor graph one is interested in is not a tree?
There are several options, and they divide into exact methods and approx-

imate methods. The most widely used exact method for handling marginaliza-
tion on graphs with cycles is called the junction tree algorithm. This algorithm
works by agglomerating variables together until the agglomerated graph has
no cycles. You can probably figure out the details for yourself; the complexity
of the marginalization grows exponentially with the number of agglomerated
variables. Read more about the junction tree algorithm in (Lauritzen, 1996;
Jordan, 1998).

There are many approximate methods, and we’ll visit some of them over
the next few chapters – Monte Carlo methods and variational methods, to
name a couple. However, the most amusing way of handling factor graphs
to which the sum–product algorithm may not be applied is, as we already
mentioned, to apply the sum–product algorithm! We simply compute the
messages for each node in the graph, as if the graph were a tree, iterate, and
cross our fingers. This so-called ‘loopy’ message passing has great importance
in the decoding of error-correcting codes, and we’ll come back to it in section
33.8 and Part VI.

Further reading

For further reading about factor graphs and the sum–product algorithm, see
Kschischang et al. (2001), Yedidia et al. (2000), Yedidia et al. (2001a), Yedidia
et al. (2002), Wainwright et al. (2003), and Forney (2001).

See also Pearl (1988). A good reference for the fundamental theory of
graphical models is Lauritzen (1996). A readable introduction to Bayesian
networks is given by Jensen (1996).

Interesting message-passing algorithms that have different capabilities from
the sum–product algorithm include expectation propagation (Minka, 2001)
and survey propagation (Braunstein et al., 2003). See also section 33.8.

�
26.5 Exercises

. Exercise 26.8.
[2] Express the joint probability distribution from the burglar

alarm and earthquake problem (example 21.1 (p.293)) as a factor graph,
and find the marginal probabilities of all the variables as each piece of
information comes to Fred’s attention, using the sum–product algorithm
with on-the-fly normalization.

