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27

Laplace’s Method

The idea behind the Laplace approximation is simple. We assume that an
unnormalized probability density P*(z), whose normalizing constant

Zp = /P*(x)dx (27.1) J\ P*(x)

is of interest, has a peak at a point xg. We Taylor-expand the logarithm of
P*(z) around this peak:

In P*(z) ~ In P*(zo) — g(m —zg) 4, (27.2) In P*(x)
where
0? .
c=-35 In P*(x) . (27.3)
We then approximate P*(z) by an unnormalized Gaussian,
* * c & InQ*(x)
Q*(z) = P*(xp) exp {fi(m - I0)2:| , (27.4)

and we approximate the normalizing constant Zp by the normalizing constant

of this Gaussian, b
5
Zo = P* (o) —. (27.5)  P*(x)
¢ & Q*(x)

We can generalize this integral to approximate Zp for a density P*(x) over
a K-dimensional space x. If the matrix of second derivatives of —In P*(x) at
the maximum xg is A, defined by:

2
Ay =— In P* 27.6
1] 8%1(9%] n (X) N ’ ( )
so that the expansion (27.2) is generalized to
1

In P*(x) ~ In P*(xq) — §(X —x0)'A(x — %) + -, (27.7)

then the normalizing constant can be approximated by:

. 1 . 2m)K

Zp ~ Zg = P*(x0) ———= = P"(x0) (2m) (27.8)

det A~

/ 1
det ﬂA

Predictions can be made using the approximation . Physicists also call this
widely-used approximation the saddle-point approximation.
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The fact that the normalizing constant of a Gaussian is given by

K
/de exp {f% TAx} = Eize:)A (27.9)

can be proved by making an orthogonal transformation into the basis u in which
A is transformed into a diagonal matrix. The integral then separates into a
product of one-dimensional integrals, each of the form

/dui exp {f%&uf} = ij (27.10)

The product of the eigenvalues \; is the determinant of A.

The Laplace approximation is basis-dependent: if x is transformed to a
nonlinear function u(x) and the density is transformed to P(u) = P(z) |dz/du|
then in general the approximate normalizing constants Zg will be different.
This can be viewed as a defect — since the true value Zp is basis-independent
— or an opportunity — because we can hunt for a choice of basis in which the
Laplace approximation is most accurate.

» 27.1 Exercises

ﬁ% Exercise 27.1.[%] (See also exercise 22.8 (p.307).) A photon counter is pointed
at a remote star for one minute, in order to infer the rate of photons
arriving at the counter per minute, A. Assuming the number of photons
collected r has a Poisson distribution with mean A,
)\’I‘

P(r|X) = exp(-A)

(27.11)

and assuming the improper prior P(\) = 1/, make Laplace approxima-
tions to the posterior distribution

(a) over A
(b) over logA. [Note the improper prior transforms to P(log\) =
constant.
> Exercise 27.2.1%] Use Laplace’s method to approximate the integral
e}
Z(un, uz) = / da f(a)™ (1 — f(a)), (27.12)

where f(a) =1/(1+e~%) and ug, ug are positive. Check the accuracy of
the approximation against the exact answer (23.29, p.316) for (u1,u2) =
(Y/2,%2) and (u1,u2) = (1,1). Measure the error (log Zp — log Zg) in
bits.

> Exercise 27.3.1%] Linear regression. N datapoints { (2™, ¢t(")} are generated by
the experimenter choosing each (™, then the world delivering a noisy
version of the linear function

y(z) = wo + wiz, (27.13)
™) ~ Normal(y(z™), o2). (27.14)

14
Assuming Gaussian priors on wg and wi, make the Laplace approxima-
tion to the posterior distribution of wg and w; (which is exact, in fact)
and obtain the predictive distribution for the next datapoint ¢ ™) given
(NA1)
x .

(See MacKay (1992a) for further reading.)
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